Daya Bay Offline
Software User Manual
13 February 8, 2013

Daya Bay

Contents

Contents

1 Introduction

1.1 Intended Audience e
1.2 Document Organization
1.3 Contributing
1.4 Building Documentation L e e
1.5 Typographical Conventions i
2 Quick Start
2.1 Offline Infrastructure e e e
2.2 Installation and Working with the Source Code
2.3 Offline Framework
2.4 Data Model e
2.5 Detector Description e
2.6 Kinematic Generators e e e e
2.7 Detector Simulation
2.8 Quick Start with Truth Information
2.9 Electronics Simulation e e e
2.10 Trigger Simulation L e
2.11 Readout e
2.12 Event Displayo e e
2.13 Reconstruction L
2.14 Database
3 Analysis Basics
3.1 Introduction L
3.2 Daya Bay Data Files e
3.3 NuWa Basics e
3.4 NuWa Recipes e e e
3.5 Cheat Sheets e e
3.6 Hands-on Exercises
4 Offline Infrastructure
4.1 Mailing lists L e e
4.2 DocDB . . . e e e
4.3 WIKIS e e e e
4.4 Trac bug tracker e e

5 Installation and Working with the Source Code

DO b= =

—
O © 00O Uk W

10
12
13
14
15
17
18

21
21
21
34
36
44
59

61
61
61
61
61

63

2 CONTENTS
5.1 Using pre-installed releaseo 63
5.2 Inmstalation of a Release e 64
5.3 Anatomy of a Release e 64
5.4 Version Control Your Code e 65
5.5 Technical Details of the Installation 65

6 Offline Framework 67
6.1 Introduction L 67
6.2 Framework Components and Interfaces 67
6.3 Common types of Components 68
6.4 Writing your own component Lo Lo 69
6.5 Properties and Configuration L L o 70

7 Data Model 77
7.1 OVErvIEW o i e 77
T2 TIMES . . o o e 78
7.3 Examples of using the Data Model objects L . 79

8 Data I/O 81
8.1 Goal . . . o L e 81
8.2 Features e e e 81
8.3 Packages e e e e 82
8.4 1/0 Related Job Configuration 82
8.5 How the I/O Subsystem Works 82
8.6 Adding New Data Classes e 83

9 Detector Description 91
9.1 Imtroduction e 91
9.2 Conventions e e 92
9.3 Coordinate System e e e 93
9.4 XML Files o 0 e 94
9.5 Transient Detector Store L 94
9.6 Configuring the Detector Description 94
9.7 PMT Lookups o o o e 94
9.8 Visualization e 94

10 Kinematic Generators 97
10.1 Introduction oL e 97
10.2 Generator output e 97
10.3 Generator Tools L e 97
10.4 Generator Packages L 97
10.5 Types of GenTools o e 97
10.6 Configuration L 98
10.7 MuonProphet oL e 101

11 Detector Simulation 105
11.1 Introduction e e e e e e e 106
11.2 Configuring DetSim 106
11.3 Truth Information 107
11.4 Truth Parameters e e e e 117

12 Electronics Simulation 121

CONTENTS 3

12.1 Introduction L L e e e 121
12.2 Algorithms 121
12.3 Tools o 121
12.4 Simulation Constant L 124
13 Trigger Simulation 127
13.1 Introduction L e e e e 127
13.2 Configuration e 127
13.3 Current Triggers o 0 e e e 128
13.4 Adding a new Trigger 129
14 Readout 131
14.1 Introduction L L e e 131
14.2 ReadoutHeader e e e 131
14.3 SimReadoutHeader L 132
14.4 Readout Algorithms 132
14.5 Readout Tools L e 133
15 Simulation Processing Models 135
15.1 Introduction oL e e 135
15.2 Fifteen o o o 135
16 Reconstruction 145
17 Database 147
17.1 Database Interface e e e 147
17.2 Concepts o o o e 147
17.3 Running oL e e 153
17.4 Accessing Existing Tables 156
17.5 Creating New Tables 0 e 163
17.6 Filling Tables o . e 169
17.7 ASCII Flat Files and Catalogues it 176
17.8 MySQL Crib . . .« o 178
17.9 Performance L e 180
18 Database Maintanence 183
18.1 Introduction L oL e 183
18.2 Building and Running dbmjob L oo 184
19 Database Tables 187
19.1 AdMass o 188
19.2 AAWpHvMap« . o o 189
19.3 AdWpHvSetting L o 190
19.4 AdWpHvToFee 191
19.5 CableMap L 192
19.6 CableMapFix« . 193
19.7 CalibFeeGainConv 0 194
19.8 CalibFeeSpec o e 195
19.9 CalibFeeSpecCleanup o o e e 196
19.10CalibPmtFineGain 197
19.11CalibPmtHighGain 198

19.12CalibPmtHighGainFake 199

4 CONTENTS

19.13CalibPmtHighGainPariah 0o o 200
19.14CalibPmtLowGain e 201
19.15CalibPmtPedBias 202
19.16CalibPmtSpec o 203
19.17CalibPmtTimOff oL 204
19.18CalibPmtTiming o 205
19.19CalibRpcSpec e 206
19.20CalibSrcEnergy L e 207
19.21Co0ordinate Ad 208
19.22CoordinateReactor L 209
19.23DaqCalibRunInfo 210
19.24DagRawDataFileInfo 211
19.25DaqRunlnfo L 212
19.26DataQualityDetector L 213
19.27DataQualityGoodRun oL 214
19.28DataQualityPmt 215
19.29DataQualityRpc e 216
19.30DataQualityTrigger oL e 217
19.31DcesAdPmMtHY L L 218
19.32DcsAdTemp o oL e 219
19.33DesAAWpHY . . o o L L 220
19.34DcsAdWpHvShunted L 221
19.35DcsMuonCalib L 222
19.36DcsPmtHv oL e 223
19.37DesRpcHV . . o o o 224
19.38DcsWpPmtHv o oL e 225
19.39Demo . ..o e e 226
19.40DemoAgEo e e e 227
19.41DqChannel oL 228
19.42DqChannelStatus Lo 229
19.43DgDetector oL e 230
19.44DgDetectorNew L e 231
19.45DqLiveTime L e e 232
19.46DgPmt L e 233
19.47DgPmMtNew L 234
19.48DqTriggerCounts o i i e e e 235
19.49DqWPMonitoring oL e e e e e 236
19.50EnergyPositionCorro e 237
19.51EnergyRecon L 238
19.52FeeCableMap 239
19.53GoodRunList Lo e 240
19.54HardwarelD Lo e 241
19.55HardwarelDFix o . oL 242
19.56McsPos o e e 243
19.57PhysAd e 244
19.58QSumCalib L 246
19.59S5ImPmtSpec L L 247
19.60TimeLatency e e 248

20 Bibliography 249

CONTENTS 5

Bibliography 251

Chapter 1

Introduction

1.1 Intended Audience

This manual describes how Daya Bay collaborators can run offine software jobs, extend existing functionality
and write novel software components. Despite also being programmers, such individuals are considered
“users” of the software. What is not described are internal details of how the offline software works which
are not directly pertinent to users.

This document covers the software written to work with the Gaudi framework!. Some earlier software
was used during the Daya Bay design stage and is documented elsewhere[1].

1.2 Document Organization

The following chapter contains a one to two page summary or “quick start” for each major element of the
offline. You can try to use this chapter to quickly understand the most important aspects of a major offline
element or refer back to them later to remind you how to do something.

Each subsequent chapter gives advanced details, describes less used aspects or expand on items for which
there is not room in the “quick start” section.

1.3 Contributing

Experts and users are welcome to contribute corrections or additions to this documentation by commiting
.tex or .rst sources. However:

Ensure latex compiles before committing into dybsun

1.4 Building Documentation

To build the plain latex documentation:
1cd $SITEROOT/dybgaudi/Documentation/0fflineUserManual/tex

2make plain

To build the Sphinx derived latex and html renderings of the documentation some non-standard python
packages must first be installed, as described docs?. After this the Sphinx documentation can be build with:
1. “/v/docs/bin/activate
2cd $SITERO0T/dybgaudi/Documentation/0fflineUserManual/tex
3make

1See chapter 6.
?http:///dayabay.bnl.gov/oum/docs

http://dayabay.bnl.gov/oum/docs
http:///dayabay.bnl.gov/oum/docs

2 CHAPTER 1. INTRODUCTION

1.5 Typographical Conventions

This is bold text.

Chapter 2

Quick Start

This chapter holds brief “quick start” information about each major offline software element.

4 CHAPTER 2. QUICK START

2.1 Offline Infrastructure

2.2. INSTALLATION AND WORKING WITH THE SOURCE CODE)

2.2 Installation and Working with the Source Code

2.2.1 Installing a Release
1. Download dybinst!.

2. Run it: ./dybinst RELEASE all

The RELEASE string is trunk to get the latest software or X.Y.Z for a numbered release. The wiki topic
Category:Offline_Software_Releases? documents avilable releases.

2.2.2 Using an existing release

The easiest way to get started is to use a release of the software that someone else has compiled for you. Each
cluster maintains a prebuilt release that you can just use. See the wiki topic Getting_Started_With_Offline_Software
for details.

3

2.2.3 Projects

A project is a directory with a cmt/project.cmt file. Projects are located by the CMTPROJECTPATH environ-
ment variable. This variable is initialized to point at a released set of projects by running:

1 shell> cd /path/to/NuWa—RELEASE
2 bash> source setup.sh
3 tcsh> source setup.csh

Any directories holding your own projects should then be prepended to this colon (“:”) separated
CMTPROJECTPATH variable.

2.2.4 Packages

A package is a directory with a cmt/requirements file. Packages are located by the CMTPATH environment
variable which is automatically set for you based on CMTPROJECTPATH. You should not set it by hand.

2.2.5 Environment

Every package has a setup script that will modify your environment as needed. For example:

shell> cd /path/to/NuWa—RELEASE/dybgaudi/DybRelease/cmt/
shell> cmt config

bash> source setup.sh

tcsh> source setup.csh

W N =

Ihttp://dayabay.ihep.ac.cn/svn/dybsvn/installation/trunk/dybinst/dybinst
2https://wiki.bnl.gov/dayabay/index.php?title=Category:0ffline_Software_Releases
Shttps://wiki.bnl.gov/dayabay/index.php?title=Getting_Started_With_0ffline_Software

https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
https://wiki.bnl.gov/dayabay/index.php?title=Getting_Started_With_Offline_Software
http://dayabay.ihep.ac.cn/svn/dybsvn/installation/trunk/dybinst/dybinst
https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
https://wiki.bnl.gov/dayabay/index.php?title=Getting_Started_With_Offline_Software

6 CHAPTER 2. QUICK START

2.3 Offline Framework

2.4. DATA MODEL

2.4 Data Model

8 CHAPTER 2. QUICK START

2.5 Detector Description

2.6. KINEMATIC GENERATORS

2.6 Kinematic Generators

10 CHAPTER 2. QUICK START

2.7 Detector Simulation

2.8 Quick Start with Truth Information

Besides hits, DetSim, through the Historian package can provide detailed truth information in the form
of particle histories and unobservable statistics. These are briefly described next and in detail later in this
chapter.

2.8.1 Particle History

As particles are tracked through the simulation information on where they traveled and what they encoun-
tered can be recorded. The particle history is constructed with tracks (SimTrack objects) and vertices
(SimVertex objects). Conceptually, these may mean slightly different things than what one may expect. A
vertex is a 4-location when something “interesting” happened. This could be an interaction, a scatter or a
boundary crossing. Tracks are then the connection between two vertices.

Because saving all particle history would often produce unmanageably large results rules are applied by
the user to specify some fraction of the total to save. This means the track/vertex hierarchy is, in general,
truncated.

2.8.2 Unobservable Statistics

One can also collect statistics on unobservable values such as number of photons created, number of photon
backscatters, and energy deposited in different ADs. The sum, the square of the sum and the number of
times the value is recorded are stored to allow mean and RMS to be calculated. The same type of rules that
limit the particle histories can be used to control how these statistics are collected.

2.8.3 Configuring Truth Information

The rules that govern how the particle histories and unobservable statistics are collected are simple logical
statements using a C++ like operators and some predefined variables.

Configuring Particle Histories

The hierarchy of the history is built by specifying selection rules for the tracks and the vertices. Only those
that pass the rules will be included. By default, only primary tracks are saved. Here are some examples of
a track selection:

Make tracks for everything that’s not an optical photon:
trackSelection = "pdg !'= 20022"
Or, make tracks only for things that start
in the GD scintillator and have an energy > 1Mev
trackSelection =

"(MaterialName == ’/dd/Materials/GdDopedLS’) and (E > 1 MeW)"

And, here are some examples of a vertex selection:

Make all vertices.. one vertex per Step.

vertexSelection = "any"

Make vertices only when a particle crosses a volume boundary:
vertexSelection = "VolumeChanged == 1"

2.8. QUICK START WITH TRUTH INFORMATION 11

As an aside, one particular application of the Particle Histories is to draw a graphical representation of the
particles using a package called GraphViz*. To do this, put the DrawHistoryAlg algorithm in your sequence.
This will generate files in your current directory named tracks_N.dot and tracks_and_vertices_N.dot,
where N is the event number. These files can be converted to displayable files with GraphViz’s dot program.

Configuring Unobservable Statistics
What statistics are collected and when they are collected is controlled by a collection of triples:

1. A name for the statistics for later reference.
2. An algebraic formula of predefined variables defining the value to collect.

3. A rule stating what conditions must be true to allow the collection.

An example of some statistic definitions:

stats = [
["PhotonsCreated" , "E" , "StepNumber==1 and pdg==20022"]
, ["Photon_bounce_radius" , "r" , "pdg==20022 and dAngle > 90"]
, ["edep-adl" ,"dE" ,"pdg!=20022 and
((MaterialName == ’/dd/Materials/LiquidScintillator’ or
MaterialName == ’/dd/Materials/GdDopedLS’) and AD==1)"]
]

2.8.4 Accessing the resulting truth information

The resulting Truth information is stored in the SimHeader object which is typically found at /Event/Sim/SimHeader
in the event store. It can be retrieved by your algorithm like so:

DayaBay::SimHeader* header = 0;
if (exist<DayaBay::SimHeader>(evtSvc() ,m_location)) {
header = get<DayaBay::SimHeader>(m_location);
b
const SimParticleHistory* h = header->particleHistory();
const SimUnobservableStatisticsHeader* h = header->unobservableStatistics();

“http://graphviz.org

http://graphviz.org

12 CHAPTER 2. QUICK START

2.9 Electronics Simulation

2.10. TRIGGER SIMULATION 13

2.10 Trigger Simulation

The main algorithm in TrigSim, TsTriggerAlg has 3 properties which can be specified by the user.
TrigTools Default: “T'sMultTriggerTool” List of Tools to run.
TrigName Default: “TriggerAlg” Name of the main trigger algorithm for bookkeeping.

ElecLocation Default: “/Event/Electroincs/ElecHeader” Path of ElecSimHeader in the TES, currently
the default is picked up from ElecSimHeader.h

The user can change the properties through the TrigSimConf module as follows:

import TrigSim

trigsim = TrigSim.Configure()

import TrigSim.TrigSimConf as TsConf

TsConf .TsTriggerAlg() .TrigTools = ["TsExternalTriggerTool" 1]

The TrigTools property takes a list as an argument allowing multiple triggers to be specified. Once
implemented, the user could apply multiple triggers as follows:

import TrigSim

trigsim = TrigSim.Configure()

import TrigSim.TrigSimConf as TsConf

TsConf .TsTriggerAlg() .TrigTools = ["TsMultTriggerTool"
"TsEsumTriggerTool" ,
"TsCrossTriggerTool"]

14 CHAPTER 2. QUICK START

2.11 Readout

The default setup for Readout Sim used the ROsFecReadoutTool and ROsFeeReadoutTool tools to do the
FEC and FEE readouts respectivly. The default setup is as follows

import ReadoutSim

rosim = ReadoutSim.Configure()

import ReadoutSim.ReadoutSimConf as ROsConf

ROsConf .ROsReadoutAlg() .RoTools=["ROsFecReadoutTool","ROsFeeReadoutTool"]
ROsConf .ROsFeeReadoutTool() .AdcTool="R0OsFeeAdcPeakOnlyTool"

ROsConf .ROsFeeReadoutTool () .TdcTool="R0OsFeeTdcTool"

where the Fee will be read out using the tools specified via the TdcTool and AdcTool properties. Cur-
rently the only alternate readout tool is the ROsFeeAdcMultiTool which readout the cycles specified in the
ReadoutCycles relative to the readout window start. The selection and configuration of this alternate tool

1S

ROsConf .ROsFeeReadoutTool () .AdcTool="R0sFeeAdcMultiTool"
ROsConf .ROsFeeAdcMultiTool () .ReadoutCycles=[0,4,8]

2.12. EVENT DISPLAY 15

2.12 Event Display

2.12.1 A Plain Event Display: EvtDsp

A plain event display module, EvtDsp, is available for users. It makes use of the basic graphic features of
the "ROOT” package to show the charge and time distributions of an event within one plot. One example
is shown in Fig. 2.1. A lot of features of ROOT are immediately available, like ”save as” a postscript file.
All PMTs are projected to a 2-D plain. Each PMT is represented by a filled circle. The radii of them
characterize the relative charge differences. The colors of them show the times of them, i.e. the red indicates
the smallest time and the blue indicates the largest time.

Simple Mode

One can use a default simple algorithm to invoke the EvtDsp module. The charge and time of the first hit
of each channel will be shown. Once setting up the nuwa environment, the following commands can be used
to show events.

1 shell> nuwa.py —n —1 —m EvtDsp DayaBayDataFile.data

2 shell> nuwa.py —dbconf "offline_db" —n —1 —m "EvtDsp -C" DayaBayDataFile.data
3 shell> nuwa.py —n —1 —m "EvtDsp -S" DayaBaySimulatedFile.root

where the first one, by default, will show the raw information, i.e. delta ADC (ADC-preADC) and TDC
distributions from ReadoutHeader, the second one will show calibrated result, CalibReadoutHeader, in PE
and ns, as seen in Fig. 2.1 and the last line is for SimHeader, i.e. information is directly extracted from MC
truth.

A simple readouts grouping was implemented. Readouts with delta trigger times within 2us are consid-
ered as one event and shown together. But an event only allows one readout for one detector. For example
a very close retrigger after an energetic muon in the same AD will start a new event. This algorithm also
works for calibReadout and simHeader.

Advance Mode

One can also directly call the Gaudi Tool, EvtDsp, and plot the charges and times calculated in a different
manner. In the simple mode, no selection is applied to select hits, however this is not the best choice in some
cases, for example, some hits’ times are out of the physically allowed window, like the blue hit in the inner
water shield in Fig. 2.1 seems like a noise hit. One can also make a selection in an analysis algorithm to show
only a fraction of interesting events or have a different event grouping algorithm. To use this feature one
need to follow the standard Gaudi procedure to locate a tool ”EvtDsp” first, i.e., add use EvtDsp module
in cmt requirements file

1 use EvtDsp vx Visualization
then get access to this tool

#include "EvtDsp/IEvtDsp.h"

1

2

3 IEvtDsp* m_evtDsp

4 StatusCode sc = toolSvc()—>retrieveTool ("EvtDsp","EvtDsp" ,m_evtDsp);

After this three simple interfaces are available and they can be plugged into anywhere of a user code.

1

2 virtual StatusCode plotAD(DayaBay::Detector det,

3 double chrg[8][24], double time[8][24],

4 const char* chrgunit = 0, const char* timeunit = 0,
5 const char*x info = 0) = 0;

6

7

8 virtual StatusCode plotPool(DayaBay::Detector det,

16 CHAPTER 2. QUICK START

9 double chrg[9][24][2], double time[9][24][2],
10 const char* chrgunit = 0, const charx timeunit = 0,
11 const char* info = 0) =O0;

12
13 /// A pause method for user. After this all displayed stuff will be flushed.
14 virtual StatusCode pause() = 0;

where for AD, chrg and time are arrays indexed by ring-1 and column-1, while for water pool, chrg and time
arrays are indexed by wall-1,spot-1 and inward.

2.13. RECONSTRUCTION

2.13 Reconstruction

17

18 CHAPTER 2. QUICK START

2.14 Database

The content of this quickstart has been migrated to sop/°

Shttp:///dayabay.bnl.gov/oum/sop/

http://dayabay.bnl.gov/oum/sop/
http:///dayabay.bnl.gov/oum/sop/

2.14. DATABASE

™
~
-
2% ¥
-
- s
™ -
- @ e
" . - =
a”™ "ws
- " 89 [B
2 =
[X N I -
H :
--'.'-',
| * -
.
o ..
E X]
L
»e

aEEU 900 EE 04+ (LD) DODO 5HO6: L | 85 |) U SIUBas 52 1P iUy INOReayaieD SASeEmieg

TEEU SOS09901+ (LMD D000+ SR:05 L H0Z 995 |1 UNS 0 IUBAT B2 HRIU INORERP D S irgeieg

e
[=Ler e Tet=teiet

veeddeneg
setbibone:
T
T T
l."ilili
STIIIIIH
sabbbe g
Illlliltg
TILIL

TIIETATY
pennnrinf

-+

LER R R RN NS

[y
dAernnrnnns

FRREEERERS
Illllllla
RN RRERAT
llll-l-lllE
RN Y-
lttlilltf
TIILLL1L
vernibing
|i|t||'|§
ORET]]]
veendiee

19

Figure 2.1: A snapshot for EvtDsp for a muon event which passed outer and inner water pool and struck
AD No. 2, while AD No. 1 was quiet. The time and charge patterns of the AD and water pool hits are

clearly seen.

Chapter 3

Analysis Basics

3.1 Introduction

This guide will help you analyze Daya Bay data. It contains a short description of the Daya Bay data and
analysis software, called NuWa. It is not a detailed technical manual. In this document you can learn how
to:

e Open a data file and see what it contains [Sec. 3.2.1]

e Draw histograms of the data in the file [Sec. 3.2.2]

e Use NuWa to do more detailed calculations with the data [Sec. 3.3]
e Write your own NuWa analysis module [Sec. 3.4.7]

e Write your own NuWa analysis algorithm [Sec. 3.4.8]

e Select events using tags [Sec. 3.4.2]

e Add your own data variables to the data file [Sec. 3.4.3]

e Filter data based on data path or tag [Sec. 3.4.5]

A set of cheat-sheets are included. These give short descriptions of the data and other NuWa features.

3.2 Daya Bay Data Files

Daya Bay uses ROOT files for data analysis. Basic analysis can be done with these files using only the
ROOT program (http://root.cern.ch). For more complex analysis, see the Section 3.3 on using NuWa.
If you do not have ROOT installed on your computer, you can access it on the computer clusters as part of
the NuWa software (Sec. 3.5.1).

3.2.1 Opening data files
Daya Bay data files can be opened using the ROOT program,

1shell> root

2root [0] TFile f("recon.NoTag.0002049.Physics.DayaBay.SF0-1._0001.root");
3root[1] TBrowser b;

4root [1] b.BrowseObject(&f);

21

http://root.cern.ch

22 CHAPTER 3. ANALYSIS BASICS

Table 3.1: Standard paths for Event Data

Real and Simulated Data
/Event/Readout Raw data produced by the experiment Sec. 3.5.8
/Event/CalibReadout | Calibrated times and charges of PMT and RPC hits Sec. 3.5.9
/Event/Rec Reconstructed vertex and track data Sec. 3.5.11
Simulated Data Only
/Event/Gen True initial position and momenta of simulated particles
/Event/Sim Simulated track, interactions, and PMT/RPC hits (Geant)
/Event/Elec Simulated signals in the electronics system
/Event/Trig Simulated signals in the trigger system
/Event/SimReadout Simulated raw data

The ROOT browser window will display the contents of the file, as shown in Fig. 3.1. Event data is
found under the path /Event, as summarized in Table 3.1. A section on each data type is included in
this document. Simulated data files may include additional data paths containing “truth” information. A
complete list of data paths are given in Sec. 3.5.5.

8086 [X] Old ROOT Object Browser
File ¥iew Options Help

5 Eventl =l E!I.. = ¢|| |e| il Option vl

All Folders |C0ntems of "frecon.MNoTag. 000577 3. FPhysics. 5AB-AD2.5F0-1._0007 root'Event;1"

Droot D CalibReadaout;1 D FReadout;1 D FRec;1 | RegistrationSequence; 1
(CAPROOF Sessions
D.l’eIizaT.l’day'abay.fscratch.fdandwy
[CAROOT Files

IS recon. MoTagy 0005773 Physics

[0 CalibReadout;1

D Fiec;1

K — i

§ Objects ‘ A

Figure 3.1: Data File Contents

A set of standard data ROOT files will be maintained on the clusters. The file prefix is used to identify
the contents of the file, as shown in Table 3.2. The location of these files on each cluster are listed in
Section 3.5.4.

Each data paths in the ROOT file contains ROOT trees. You can directly access a ROOT tree,

1root [0] TFile f("recon.NoTag.0005773.Physics.SAB-AD2.SF0-1._0001.root");
2root [1] TTreex AdSimple = (TTreex)f.Get("/Event/Rec/AdSimple");

3.2. DAYA BAY DATA FILES

23
Table 3.2: Standard NuWa Event Data files
File Prefix Readout CalibReadout Rec Coinc | Spall | Simulation Truth (Gen,Sim)
daq. yes optional
calib. optional yes optional
recon. some events some events yes optional
coinc. some events some events some events yes optional
spall. some events some events some events yes optional

The next section gives examples of working with these ROOT Trees. See the ROOT User’s Guide for
more details on working with Trees, http://root.cern.ch/download/doc/12Trees.pdf.

3.2.2 Histogramming data

Data can be histogrammed by selecting items in the TBrowser, or by using the Draw() function of the tree.
For example, Figure 3.2 shows the data contained in a reconstructed event.

806 X| Old ROOT Object Browser
File ¥iew Options

[& Rec_ndsimple =l ﬂgl,_

[&1 Folders

Help

e <l le] = e e
‘ Contents of “frecon.NoTag.0005773.Physics. 5AB-AaD2 5F0-1._0001 roovEvent1/Rec; 1/AdSimple; 1/Rec_AdSim
(root AlPerteaderObiect i detector e directionuality Ry cirectionStatus Rt

[CIPROOF Sessions o oy o heneray 3 eneroy Quality

(1 eliza7 iayabaysseratchianchy v energy Status b errarMatrix b errarMatrixDim 3 position Quality i position Status

(CAROOT Files Ry site it &y trigger Mumber 3y trigerTmeNanaSec 3 triggerTimeSec
arecon.NoTag.DDDS??S.Physwcs.

o g Event 1 B triggerType s By B
=g vent;
- D FReadout;1

- - [CacalibReadout;1
1423 Rec; 1
[} 423 ddtsimple; 1
- D = nple]
----- (L] Registration Secuence; 1
(L] JobHeaer ;1

D FunHeadder; 1

I i

|48 Objects. [

Figure 3.2: Example Reconstructed Data

The Draw() function allows the addition of selection cuts. For example, we can draw the reconstructed

energy for all events where the reconstruction was successful by selecting events with energyStatus==1 and
energy < 15 MeV,

1root [2] AdSimple—>Draw("energy" ,"energyStatus==1 && energy<15");

Two- and three-dimensional histograms can be drawn by separating the variables with a colon. The

third colz argument will use a color scale for a two-dimensional histogram. Fig. 3.3 shows the resulting
histograms.

http://root.cern.ch/download/doc/12Trees.pdf

24 CHAPTER 3. ANALYSIS BASICS

1root [3] AdSimple—>Draw("z:sqrt(x*x+y*y)" 6 "positionStatus==1","colz");

energy {energyStatus==1 && energy<15} z:sqrt(x*x+y*y) {positionStatus==1}
e Pitemp

20000 Entries 105018 ‘ ' ‘ 300
18000 = Mean 2.677

E RMS 3.287 250
16000[— =
14000 - 200
12000 —
10000 - 150
8000 =

E B 100
6000 E
4000 =

E E vimuMANRM I 50
2000 ﬂ E

oE | L [P S IR B P SR E S RS R 0

0 2 4 6 8 10 12 14 16 500 1000 1500 2000 2500

o
3
3
«Q
<

Figure 3.3: Example Histograms

A weighting can be added to each entry in histogram by multiplying your selection by the weighting
factor (i.e. weight*(selection). This can be used to draw the calibrated PMT charge distribution in AD2
(Fig. ??.) The charge distribution for a specfic event can be selected using the event number.

1root[1l] TTreex CalibReadoutHeader = (TTreex*)f.Get("/Event/CalibReadout/CalibReadoutHeader");
2root [2] CalibReadoutHeader—>Draw("ring:column",

3 "chargeAD*(detector==2)","colz")

4root [3] CalibReadoutHeader—>Draw("ring:column",

5 "chargeAD*(detector==2 && eventNumber==12345)","colz")
ring:column {chargeAD*(context.mDetld==2)} {chargeAD" mDetld==2 8& 12345))

ring

o
QAN RN RN AR RN AR AR AR LAAR AR

column B column .
Figure 3.4: The calibrated PMT charge (in photoelectrons) for all events and for an individual event.

The trigger time is divided into two parts; a count of seconds from January 1970 (i.e. unixtime), and a
precise count of nanoseconds from the last second. To draw the absolute trigger time, you must add these
two counts. Figure 3.5 shows a histogram of the calibrated PMT hit charges versus trigger time!. The
ROOT Sum$ () function will histogram the sum of a quantity for each event; it can be used to histogram the
sum of charge over all AD PMTs.

1root [2] CalibReadoutHeader—>Draw("chargeAD:triggerTimeSec+triggerTimeNanoSec*1le-9",

2 "(detector==2 && ring==4 && column==15 && chargeAD>-3 && chargeAD<7)",
3 "colz");

IThe trigger time can be converted to a readable Beijing local time format using the lines described in Sec. 3.5.16

3.2. DAYA BAY DATA FILES 25

4root [3] CalibReadoutHeader—>Draw("Sum$ (chargeAD):triggerTimeSec+triggerTimeNanoSec*1le-9",

5 "detector==2 && Sum$ (chargeAD)<1500" "colz");
o 250 51600 7
$ I s r I8 1000
2 6 1400 —
5 [200 £ F]
N S1200F - —fsoo
4 E T]
E @ 1000~ 3
- 150 E 3/ 600
2= o 8001 =
. - C 1
- * L BB B B C |
L - 100 600F =l =400
L 400 -
e ' I - = = i' o 50 ok E 2
F mpgmm g ==k g]
[- = |
P B I R O s o, 5 S e w e ow e 8
73:55:00 73:55:20 1355:40 73:56:00 0 0735500 135520 1355:40 13:56:00 0
21/09/2010 21/09/2010 21/09/2010 21/09/2010 21/09/2010 21/09/2010 21/09/2010 21/09/2010

triggerTimeSec+triggerTimeNanoSec*1e-9 triggerTimeSec+triggerTimeNanoSec*1e-9

Figure 3.5: The calibrated charge (in photoelectrons) for one PMT and for the sum of all PMTs versus
trigger time.

3.2.3 Histogramming Raw DAQ data

To properly histogram raw DAQ data from /Event/Readout, you will need to use part of the Daya Bay
software in addition to ROOT. You must load the NuWa software, as described in Sec. 3.5.1. Running
load.C will allow you to call functions in your Draw() command. For example, you can call the function to
draw the raw fine-range ADC and TDC distributions for PMT electronics board 6, connector 5 (Fig. 3.6.)
The selection on context.mDetId==2 selects the detector AD2; Sec. 3.5.7 lists the allowed detector and site
IDs. If you have a raw .data file produced by the DAQ), see section 3.5.8 to wrap it in a ROOT tree so that
you can directly histogram the raw data.
1root [0] .x $ROOTIOTESTROOT/share/load.C

2root[1] TFile f("daq.NoTag.0005773.Physics.SAB-AD2.SF0-1._0001.roo0t");
3root [2] TTreex ReadoutHeader = (TTreex)f.Get("/Event/Readout/ReadoutHeader");

4root [3] ReadoutHeader—>Draw("dagPmtCrate().adcs(6,5,1).value()","context.mDetId==2");
5root [4] ReadoutHeader—>Draw("dagPmtCrate ().tdcs(6,5,1).value()","context.mDetId==2");
dagPmtCrate().adcs(6,5,1).value() {context.mDetld==2} daqPmtCrate().tdcs(6,5,1).value() {context.mDetld==2}
htemp htemp
16000/ T T T T T T L R R IR B L
E Entries 52998 220001— Entries 52998
14000 Mean 381.6 20000 Mean 974.8
. RMS 347.6| 50000 RMS 59.45
12000— — E E
- 1 16000 3
10000 — 14000 =
8000 3 120001 =
F E 10000 3
sooo:— = 8000 3
40001 = 60001 E
£ 7 40001 =
2000 — c |
F 1 2000 3
Py = A e L e b L 1] S I N I I L ST R
0 500 1000 1500 2000 2500 3000 3500 400 500 600 700 800 900 1000 1100 120

daqPmtCrate().adcs(6,5,1).value() dagPmtCrate().tdcs(6,5,1).value()

7

Figure 3.6: Histograms of Raw fine-range ADC and TDC values from PMT FEE board 6, connector 5.

26 CHAPTER 3. ANALYSIS BASICS

3.2.4 Some ROOT Tree Tricks

A ROOT TChain can be used to combine the trees of the same path from multiple files into one large tree.
For example, if a data run produced two files, you can combine the trees from these files:

1root [0] TChain AdSimple("/Event/Rec/AdSimple");

2root [1] AdSimple.Add("recon.NoTag.0005773.Physics.SAB-AD2.SF0-1._0001.root");

3root [2] AdSimple.Add("recon.NoTag.0005773.Physics.SAB-AD2.SF0-1._0002.root");
4root [3] AdSimple.Draw("energy","energyStatus==1 && detector==2");

To combine all the variables from trees at different data paths into a single tree, you can use the
TTree: :AddFriend () function. This can be used to histogram or select using variables from both trees.
This should only be done for trees that are synchronized. The raw, calibrated, and reconstructed data are
generally synchronized, as long as the data has not been filtered. The simulated truth trees at /Event/Gen
and /Event/Sim are generally not synchronized with the data trees since one simulated event may produce
an arbitary number of triggered readouts.

1root [1] TTreex CalibReadoutHeader = (TTreex)f.Get("/Event/CalibReadout/CalibReadoutHeader");
2root [2] TTreex AdSimple = (TTreex)f.Get("/Event/Rec/AdSimple");

3root [3] AdSimple—>AddFriend(CalibReadoutHeader);
4root [4] AdSimple—>Draw("energy:nHitsAD" , "detector==2",6"colz");

See the ROOT User’s Guide for more details on working with Trees, http://root.cern.ch/download/
doc/12Trees.pdf.

3.2.5 Analysis Examples (or A Treatise on Cat-skinning)

What is the best / simplest / fastest way for me to examine event data and generate my
histograms?

If this is your question, then please read this section. As discussed in the preceding sections, you can
directly use ROOT to inspect NuWa event data files. Within ROOT, there are a few different methods to
process event data. Alternatively, you can use the full power NuWa to process data. To demonstrate these
different methods, a set of example scripts will be discussed in this section. Each example script generates
the exact same histogram of number of hit PMT's versus reconstructed energy in the AD, but uses a different
methods. Each ROOT script shows how to “chain” trees from multiple files, and how to “friend” data trees
from the same file. All example scripts can be found in the Tutorial/Quickstart? software package.

e dybTreeDraw.C: ROOT script using TTree: :Draw()
e dybTreeGetLeaf.C: ROOT script using TTree: :GetLeaf ()
e dybTreeSetBranch.C: ROOT script using TTree: : SetBranchAddress ()

e dybNuWaHist.py: NuWa algorithm using the complete data classes

The example dybTreeDraw.C is the simplest approach; it is recommended that you try this method first
when generating your histograms. If you plan to include your algorithm as part of standard data production,
you will eventually need to use a NuWa algorithm such as dybNuWaHist.py. The other two methods are
only recommended for special circumstances. A detailed description of the advantages and disadvantages of
each approach are provided in the following sections.

?http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart

http://root.cern.ch/download/doc/12Trees.pdf
http://root.cern.ch/download/doc/12Trees.pdf
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart

3.2. DAYA BAY DATA FILES 27

dybTreeDraw.C

This is the easiest approach and usually requires the least programming. Please consider using this approach
first if possible.
Advantages:

Simple to run

Requires the least programming
e Easy for others to understand and reproduce
e Allows chaining and friending of data files

Disadvantages:

Slower when you need to make many histograms

Some cuts or variables cannot be expressed in a draw command

e No access to geometry, database, other external data

Cannot be integrated with production analysis job

To run this example, use the following approach:

1 root [0] .L dybTreeDraw.C+
2 root [1] dybTreeDraw("recon*.root")

The key lines from the script are:

1

2

3 reconT.Draw("calibStats.nHit:energy>>nhitVsEnergyAD1H",
4 "context.mDetId==1 && energyStatus==1");

5

6 reconT.Draw("calibStats.nHit:energy>>nhitVsEnergyAD2H",
7 "context.mDetId==2 && energyStatus==1");
dybGetLeaf.C

There are some cases where the variables and cuts cannot be expressed in a simple TTree: :Draw() command.
Is this case, using TTree: :GetLeaf () is an alternative. This is also a better alternative for those familiar
with TSelector or TTree: :MakeClass, since it allows chaining and friending of data files.

Advantages:

e Fairly simple to run

e Requires some minimal programming

e Allows chaining and friending of data files
Disadvantages:

e No access to geometry, database, other external data
e Cannot be integrated with production analysis job

To run this example, use the following approach:

1 root [0] .L dybTreeGetLeaf.C+
2 root [1] dybTreeGetLeaf ("recon*.root")

© 0 N O U A W N

L T T S S e g S
B WD RO © OO A W RO

© 0 N O Use W N

28 CHAPTER 3. ANALYSIS BASICS

The key lines from the script are:

// Process each event
int maxEntries=reconT.GetEntries ();
for(int entry=0;entry<maxEntries;entry++){

// Get next event
reconT.GetEntry(entry);

// Get event data

int detector = (int) reconT.GetLeaf ("context.mDetId")—>GetValue ();
int energyStatus = (int) reconT.GetLeaf ("energyStatus")—>GetValue ();
double energy = reconT.GetLeaf ("energy")—>GetValue ();

int nHit = (int)reconT.GetLeaf("calibStats.nHit")—>GetValue ();

// Fill histograms
if (energyStatus==1){ // Reconstruction was successful
if (detector==1){
// AD#1
nhitVsEnergyAD1H—>Fill (energy ,nHit);
}else if(detector==2){
// AD#2
nhitVsEnergyAD2H—>Fill (energy ,nHit);

}
}
}

dybTreeSetBranch.C

Use this approach only if you really need the fastest speed for generating your histograms, and cuts cannot be
expressed in a simple TTree: :Draw() command. The example script relies on TTree: : SetBranchAddress ()
to explicitly manage the event data location in memory. By avoiding reading data unnecessary data from
the file, it also demonstrates how to achieve the highest speed.

Advantages:

e Fastest method to histogram data

e Allows chaining and friending of data
Disadvantages:

e Requires some careful programming

e No access to geometry, database, other external data
e Cannot be integrated with production analysis job

To run this example, use the following approach:

root [0] .L dybTreeSetBranch.C+
root [1] dybTreeSetBranch("recon*.root")

The key lines from the script are:

// Enable only necessary data branches
reconT.SetBranchStatus ("*" ,0); // Disable all
calibStatsT.SetBranchStatus("*" ,0); // Disable all

// Must reenable execNumber since the tree indexing requires it
reconT.SetBranchStatus ("execNumber" ,kTRUE);
reconT.SetBranchStatus("calibStats.execNumber" ,kTRUE);

int detector = O0;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1

3.2. DAYA BAY DATA FILES 29

reconT.SetBranchStatus("context.mDetId" ,kTRUE);
reconT.SetBranchAddress ("context.mDetId" ,&detector);

int energyStatus = O0;
reconT.SetBranchStatus ("energyStatus" ,kTRUE);
reconT.SetBranchAddress ("energyStatus",&energyStatus);

float energy = —1;
reconT.SetBranchStatus ("energy" ,kTRUE);
reconT.SetBranchAddress ("energy",&energy);

int nHit = —1;
reconT.SetBranchStatus("calibStats.nHit" ,kTRUE);
reconT.SetBranchAddress ("calibStats.nHit" ,&nHit);

// Process each event
int maxEntries=reconT.GetEntries ();

for(int entry=0;entry<maxEntries;entry++){

// Get next event
reconT.GetEntry(entry);

// Fill histograms

if (energyStatus==1){ // Reconstruction was successful
if (detector==1){
// AD#1
nhitVsEnergyAD1H—>Fill (energy ,nHit);
}else if(detector==2){
// AD#2
nhitVsEnergyAD2H—>Fill (energy ,nHit);
}
}
}
dybNuWaHist.py

This example uses a full NuWa algorithm to generate the histogram. Use this approach when you need
complete access to the event data object, class methods, geometry information, database, and any other
external data. You must also use this approach if you want your algorithm to be included in the standard
production analysis job. It is the most powerful approach to analysis of the data, but it is also the slowest.
Although it is the slowest method, it may still be fast enough for your specific needs.

Advantages:

e Full data classes and methods are available

e Full access to geometry, database, other external data
e Can be integrated with production analysis job
Disadvantages:

e Slowest method to histogram data

e Requires some careful programming

e Requires a NuWa software installation

To run this example, use the following approach:

shell> nuwa.py —n —1 —m"Quickstart.dybNuWaHist" recon=*.root

The key lines from the script are:

© 0 N O U s W N

W W W W W WwwwwwhNNNDNDNDNND-NDN = H = e e = =
© 0 N O U E WO O N0 U R WN O OO ORE WD O

30 CHAPTER 3. ANALYSIS BASICS

def execute(self):
"""Process each event"""
evt = self.evtSvc()

Access the reconstructed data

reconHdr = evt["/Event/Rec/AdSimple"]

if reconHdr — None:
self.error ("Failed to get current recon header")
return FAILURE

Access the calibrated data statistics

calibStatsHdr = evt["/Event/Data/CalibStats"]

if reconHdr —— None:
self.error("Failed to get current calib stats header")
return FAILURE

Check for antineutrino detector
detector = reconHdr.context ().GetDetId()
if detector == DetectorId.kAD1 or detector —— DetectorId.kAD2:

Found an AD. Get reconstructed trigger

recTrigger = reconHdr.recTrigger ()

if not recTrigger:
No Reconstructed information
self .warning("No reconstructed data for AD event!?")
return FAILURE

Get reconstructed values

energyStatus = recTrigger.energyStatus ()
energy = recTrigger.energy ()

nHit = calibStatsHdr.getInt ("nHit")

Fill the histograms

if energyStatus — ReconStatus.kGood:
if detector — DetectorId.kAD1:
self .nhitVsEnergyAD1H.Fill(energy/units.MeV, nHit)
elif detector —— DetectorId.kAD2:

self .nhitVsEnergyAD2H.Fill(energy/units.MeV, nHit)
return SUCCESS

The next section provides more information on data analysis using NuWa (Sec. 3.3).

3.2.6 Advanced Examples

The following section presents advanced examples of working with Daya Bay data files. All example scripts
can be found in the Tutorial/Quickstart® software package.

Combining Unfriendly’ Trees

The examples in the previous section show how to histogram data by ’friending’ trees. Trees can only be
'friended’ if there is a natural relationship between the trees. The Coincidence and Spallation trees collect
data from multiple triggers into one entry. As a consequence, you cannot ’friend’ these trees with the trees
which contain data with one trigger per entry (e.g. CalibStats, AdSimple, etc.). For example, you may
want to histogram data in the Coincidence tree, but you want to apply a cut on a variable that is only
present in CalibStats.

It is possible to combine data from these "unfriendly’ trees. The approach is to manually look up the data
for the corresponding entries between the 'unfriendly’ trees. By building on the example dybTreeGetLeaf.C,
the advanced example dybTreeGetLeafUnfriendly.C generates a histogram with data from both the Coincidence

Shttp://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart

3.2. DAYA BAY DATA FILES 31

and CalibStats data. The first step in this process is to create an index to allow a unique look-up of an
entry from the CalibStats tree:

}

© 00 N OO A W N -

= o= e
N o= O

// Disable pre-existing index in the calib stats trees

// (Another reason ROOT is frustrating; we must manually do this)

calibStatsT.GetEntries ();

Long64_t* firstEntry = calibStatsT.GetTreeOffset ();

for(int treeldx=0; treeldx<calibStatsT.GetNtrees (); treeldx++){
calibStatsT.LoadTree(firstEntry[treeldx]);
calibStatsT.GetTree()—>SetTreelndex (0);

// Build a new look-up index for the ’unfriendly’ tree
// (Trigger number and detector id uniquely identify an entry)
calibStatsT.BuildIndex("triggerNumber","context.mDetId");

Once this index is available, we can manually load a specific CalibStats entry with the call:

-

// Look up corresponding entry in calib stats

2 int status = calibStatsT.GetEntryWithIndex (triggerNumber , detector);

Now that we are prepared, we can step through each entry in the Coincidence tree. For each Coincidence
multiplet we can look up all of the corresponding entries from the CalibStats tree. Here is the main loop
over Coincidence entries from the example script, demonstrating how to fill a histogram with data from these
unfriendly trees:

© 0 N O U e W N

int
int
std
std
std

WO RN NN NN NN R R e e e e
S O ® TS GtAEWRN R O©OWNOUA W= O

}

W W W W wwwww
© 0 N O Us W N

// Process each coincidence set
int maxEntries=adCoincT.GetEntries ();
for(int entry=0;entry<maxEntries;entry+4++){

// Get next coincidence set
adCoincT.GetEntry (entry);

// Get multiplet data

multiplicity = (int) adCoincT.GetLeaf ("multiplicity")—>GetValue ();
detector = (int) adCoincT.GetLeaf ("context.mDetId")—>GetValue ();
i:vector<int>& triggerNumberV = getLeafVectorI("triggerNumber" ,&adCoincT);
;:vector<int>& energyStatusV = getLeafVectorI("energyStatus",&adCoincT);
i:vector<float>& energyV = getLeafVectorF("e",&adCoincT);

// Loop over AD events in multiplet
for(int multIdx=0; multIdx<multiplicity; multIdx++){

// Get data for each AD trigger in the multiplet
int triggerNumber = triggerNumberV |[multIdx];

int energyStatus = energyStatusV[multIdx];

float energy = energyV[multldx];

// Look up corresponding entry in calib stats
int status = calibStatsT.GetEntryWithIndex(triggerNumber, detector);
if (status <=0){

std::cout << "Failed to find calib stats for trigger number "
<< triggerNumber << " and detector ID " << detector
<< std::endl;

continue;

// Get data from matching calib stats entry
double nominalCharge = calibStatsT.GetLeaf ("NominalCharge")—>GetValue ();

// Fill histograms
if (energyStatus==1 && energy >0){ // Reconstruction was successful

if (detector==1){
// AD#1
chargeVsEnergyAD1H—>Fill (energy ,nominalCharge/energy);
}else if(detector==2){

© 0 N O U A W N

R e
BWw N = O

15
16
17
18
19

N O Uk W=

1
2
3

32 CHAPTER 3. ANALYSIS BASICS

// AD#2
chargeVsEnergyAD2H—>Fill (energy ,nominalCharge/energy);

}
}

} // End loop over AD triggers in the multiplet
} // End loop over AD coincidence multiplets

Using TTree: :Draw() with 'Unfriendly’ Trees

The previous example script allowed us to correlate and histogram data between the 'unfriendly’ Coincidence
and CalibStats trees. This example required that we manually loop on the individual entries in the
Coincidence tree, and fill the histograms entry-by-entry. An alternate approach is to reformat the data
from the 'unfriendly’ CalibStats tree into a ’friendly’ format. Once in this ’friendly’ format, we can return
to simple calls to TTree: :Draw() to place cuts and histogram data. This approach is more technical to
setup, but can be useful if you want to continue to use TCuts, or if you want to repeatedly histogram the
data to explore the variations of cuts.

As discussed, this approach relies on reformatting the data from an ’unfriendly’ tree into a ’friendly’
format. The example script dybTreeDrawUnfriendly.C generates the same histograms as the previous
example dybTreeGetLeafUnfriendly.C, but uses this alternate approach. The following lines shows this in
practice:

// Create ’friendly’ version of data from CalibStats
std::string mainEntriesName = "multiplicity";
std::vector<string> calibVarNames; //variable names to copy from CalibStats
calibVarNames.push_back("MaxQ");
calibVarNames .push_back("NominalCharge");
std::string indexMajorName = "triggerNumber";
std::string indexMinorName = "context.mDetId";
TTreex calibStatsFriendlyT = makeFriendTree(&adCoincT,
&calibStatsT,
mainEntriesName ,
calibVarNames ,
indexMajorName ,
indexMinorName);
if (! calibStatsFriendlyT){
std::cout << "Failed to create friendly tree" << std::endl;
return;
¥
// Add new friendly tree to coincidence tree
adCoincT.AddFriend(calibStatsFriendlyT,"calibStats");

Once this ’friendly’ tree has been generated, we can use TTree: :Draw() with the CalibStats variables:

// Fill histograms

// AD#1

adCoincT.Draw("calibStats.NominalCharge/e:e>>chargeVsEnergyAD1H"
"context.mDetId==1 && energyStatus==1 && e>0" "colz");

// AD#2

adCoincT.Draw("calibStats.NominalCharge/e:e>>chargeVsEnergyAD2H",
"context.mDetId==2 && energyStatus==1 && e>0","colz");

The reformatted CalibStats data is available in the newly created tree calibStatsFriendlyT, which is
dynamically created and kept in memory. Once you close your ROOT session, this tree will be deleted. If
you wish to keep this friendly’ tree around for later reuse, then you should write it to a file:

TFile outputFile("friendlyCalibStats.root" ,"RECREATE");

calibStatsFriendlyT.SetDirectory(&outputFile);
calibStatsFriendlyT.Write ();

The generation of this reformatted ’friendly’ tree relies on the fairly complex helper function makeFriendTree:

3.2. DAYA BAY DATA FILES 33

1TTreex* makeFriendTree(TChain* mainT,

2 TChain* unfriendlyT,

const string& mainEntriesName,

const std::vector<string>& friendVarNames ,
const string& indexMajorName,

const string& indexMinorName)

[S2 IS B Y]

One entry in the tree mainT corresponds to multiple entries in the unfriendlyT tree; these are the
Coincidence and CalibStats trees respectively in our example. mainEntriesName is the name of the
branch in mainT that tells us the count of unfriendlyT entries that correspond to the current mainT entry.
This is the variable multiplicity in our example, which tells us how many AD triggers are in the current
coincidence multiplet. The variables names given in friendVarNames are reformatted from single numbers
(i.e. float friendVar) in the unfriendlyT tree to arrays (i.e. float friendVar[multiplicityl) in the
new ’friendly’ tree returned by the function. For our example, these are the CalibStat variables MaxQ and
NominalCharge. The indexMajorName and indexMinorName variables are present in both trees, and are used
to correlate one entry in the mainT with multiple entries in the unfriendlyT tree. These are the variables
triggerNumber and context.mDetId. Note that one or both of these index variables must be an array in
the mainT tree to properly describe the 'unfriendly’ one-to-many relationship between entries in mainT and
unfriendlyT.

This helper function may require some slight modification for your specific case. It assumes that the
branches have the following types:

e mainEntriesName: integer in mainT
e friendVarNames: float in unfriendlyT
e indexMajorName: vector<int> in mainT and int in unfriendlyT

e indexMinorName: int in both mainT and unfriendlyT

This helper function could be extended to dynamically check these variable types (eg. float, int,
vector<float>, vector<int>, etc), and then respond accordingly. This is left as an exercise for the
analyzer.

34 CHAPTER 3. ANALYSIS BASICS

3.3 NuWa Basics

If you wish to do more analysis than histogramming data from files, you must use NuWa. NuWa is the
name given to the analysis software written for the Daya Day experiment. It is installed and available on the
computer clusters. To load the software on one of the clusters, see Sec. 3.5.1. To install NuWa on another
computer, see Sec. 3.5.2.

NuWa analysis allows you to:

e Access all event data

e Relate data at different paths (ie. /Event/Rec to /Event/Readout)
e Access non-event data (ie. PMT positions, cable mapping, etc)

e Do more complex calculations

o Write NuWa data files

This section provides a short description of the nuwa.py program, Job Modules, and analysis algorithms.
This is followed by a series of recipes for common analysis tasks.

3.3.1 The nuwa.py Command

The nuwa.py command is the main command to use the Daya Bay analysis software. A command has a
structure similar to,

1shell> nuwa.py —n <numberOfEntries> —m"<Module>" <inputFile>
A complete list of options is given in Sec ??7. An example is,

1shell> nuwa.py —n 100 —m"Quickstart.PrintRawData" daq.NoTag.0005773.Physics.SAB—AD2.SFO—1._0001.root

In this simple example, the first 100 triggered readouts are read from the input file, and their data is
printed to the screen. The -n option specifies the number of entries to process. The -n -1 option will
process all events in the input file(s). The -m option specifies how the job should be configured. Sec. 3.3.2
discusses job configuration using Job Modules.

An arbitrary number of input files can be given, and will be processed in sequence.

1shell> nuwa.py —n <numberOfEntries> —m"<Module>" <inputFilel> <inputFile2>

The -o option can be used to write the event data to a NuWa output file,

1shell> nuwa.py —n <numberOfEntries> —m"<Module>" —o <outputFile> <inputFile>
Some other useful options are,
e ——no-history: Do not print out job configuration information to the screen

e -1 n: Set the minimum level of logging output printed to the screen (1: VERBOSE, 2: DEBUG, 3:
INFO, 4: WARNING, 5: ERROR)

e -A nx*s: Keep events for the past n seconds available for correlation studies with the current event.

e —-help: Print nuwa.py usage, including descriptions of all options.

3.3. NUWA BASICS 35

3.3.2 NuWa Job Modules
Job modules are used to configure simulation and analysis tasks. Specifically, Job modules are scripts which

do the following;:

e Add analysis Algorithms and Tools to the job

e Configure Algorithms, Tools, and Services used by the job

Job Modules are used with the nuwa.py command as follows,

1shell> nuwa.py —n 100 —m"<Modulel>" —m"<Module2>" <inputFile>

You can put as many modules as you like on the command line. Some modules can take arguments;
these should be placed inside the quotes immediately after the module name,

1shell> nuwa.py —n 100 —m"<Modulel> -a argA -b argB" <inputFile>

36 CHAPTER 3. ANALYSIS BASICS

3.4 NuWa Recipes

Many NuWa analysis tasks rely on a standard or familiar approach. This section provides a list of recipes
for common analysis tasks such as,

e See the history of a NuWa file [Sec. 3.4.1]

o Tag a set of events in a NuWa file [Sec. 3.4.2]

o Add your own variables to the NuWa file [Sec. 3.4.3]

o Copy all the data at a path to a new file [Sec. 3.4.5]

o Write tagged data to a new file [Sec. 3.4.6]

e Change the configuration of an existing Job Module [Sec. 3.4.7]
o Write your own analysis Algorithm [Python| [Sec. 3.4.8]

e Write your own analysis Algorithm [C++] [Sec. 3.4.9]

o Modify an existing part of NuWa [C++] [Sec. 3.4.10]

3.4.1 See the history of a NuWa File

Before using a NuWa data file, you may want to see what processing has already been done on the file. The
following command will print the history of all NuWa jobs that have been run to produce this file:

1shell> nuwa.py —n 0 —no—history —m"JobInfoSvc.Dump"
2 recon.NoTag.0005773.Physics.SAB—AD2.SFO—1._0001.root

You will see much information printed to the screen, including the following sections which summarize
the NuWa jobs that have been run on this file:

1Cached Job Information:

2{ jobId : daf3a684—6190—11e0—82f7 —003048c51482

3 cmtConfig : x86_64—slc4—gcc34—opt

4 command : /eliza7/dayabay/scratch/dandwyer/NuWa—trunk—opt/dybgaudi/InstallArea/scripts/nuwa.py
5 —n 0 —no—history —mJobInfoSvc.Dump

6 recon.NoTag.0005773.Physics.SAB—AD2.SFO—1._0001.root

7 hostid : 931167014

8 jobTime : Fri, 08 Apr 2011 03:32:40 -+0000

9 nuwaPath : /elizal6/dayabay/users/dandwyer/installs/trunk_2011_03_30_opt/NuWa—trunk
10 revision : 11307:11331

11 username : dandwyer

12}

13

14

15Cached Job Information:

16{ jobId : 6£f5c02f4—-6190—11e0—897b—003048c51482

17 cmtConfig : x86_64—slc4d—gcc34—opt

18 command : /eliza7/dayabay/scratch/dandwyer/NuWa—trunk—opt/dybgaudi/InstallArea/scripts/nuwa.py

19 —A None —n —1 —no—history —random=off —mQuickstart.DryRunTables
20 —mQuickstart.Calibrate —mQuickstart.Reconstruct

21 —o recon.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

22 daq.NoTag.0005773.Physics.SAB—AD2.SFO0—1._0001.root

23 hostid : 931167014

24 jobTime : Fri, 08 Apr 2011 03:29:39 40000

25 nuwaPath : /elizal6/dayabay/users/dandwyer/installs/trunk_2011_03_30_opt/NuWa—trunk
26 revision : 11307:11331

27 username : dandwyer

28 }

3.4. NUWA RECIPES 37

29

30

31Cached Job Information:

32{ jobId : 22c6620e—6190—11e0—84ac—003048c51482

33 cmtConfig : x86_64—slc4d—gcc34—opt

34 command : /eliza7/dayabay/scratch/dandwyer /NuWa—trunk—opt/dybgaudi/InstallArea/scripts/nuwa.py

35 —A None —n —1 —no—history —random=off —mProcessTools.LoadReadout
36 —o daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
37 /eliza7 /dayabay/data/exp/dayabay/2010/TestDAQ/NoTag/0922/daq.NoTag.0005773.Physics.SAB—AD2.SF0 —

38 hostid : 931167014

39 jobTime : Fri, 08 Apr 2011 03:27:31 40000

40 nuwaPath : /elizal6/dayabay/users/dandwyer/installs/trunk_2011_03_30_opt/NuWa—trunk
41 revision : 11307:11331

42 username : dandwyer

43}
The jobs are displayed in reverse-chronological order. The first job converted the raw daq .data file to a
NuWa .root file. The second job ran an example calibration and reconstruction of the raw data. The final
job (the current running job) is printing the job information to the screen.

3.4.2 Tag Events in a NuWa File

Event tags are used to identify a subset of events. These can be used to separate events into classes such as
muons, inverse-beta decay, noise, etc. In general, tags be used to identify any set of events of interest.

The job module Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py?* is a simple ex-
ample of tagging readouts by detector type. The tag can be applied by adding the module to a NuWa
job:
1shell> nuwa.py —n —1 —no—history —m"UserTagging.UserTag.DetectorTag"

2 daq.NoTag.0005773.Physics.SAB—AD2.SFO0—1._0001.root

To add your own tag, follow the steps for modifing an existing python module (section 3.4.8.) Use
Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py® as a starting point. You should add
your own tag in the initTaglist function:

1self.addTag(’MySpecialEvent’ , ’/Event/UserTag/MySpecialEvent’)

In the check function, you should retrieve event data and decide if you want to tag it:

1# Get reconstructed data
2recHdr = evt["/Event/Rec/AdSimple"]
3# Add your calculation / decision here

4#

5#

6if tagThisEvent:

7 # Keep track of the reconstructed data you are tagging

8 self .getTag(’MySpecialEvent’).setInputHeaders([recHdr])
9 self.taglIt(’MySpecialEvent’)

Once a tag has been set, it can be used by later analysis algorithms in the current job, or saved to the
output file and used at a later time. Here is a Python example of checking the tag:

1# Check tag
2tag = evt|["/Event/UserTag/MySpecialEvent"]

3if tag:
4 # This event is tagged. Do something.
5 #

Tags can also be used to produce filtered data sets, as shown in section 3.4.6.

4nttp://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/
UserTag/DetectorTag.py

Shttp://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/
UserTag/DetectorTag.py

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py

38 CHAPTER 3. ANALYSIS BASICS

3.4.3 Add Variables to a NuWa File

A common task is to add a new user-defined variable for each event. For example, the time since the previous
trigger can be calculated and added to each event. This is a task for UserData.
The example job module Tutorial /Quickstart /python/Quickstart /DtData.py® shows the example of adding
the time since the previous trigger to each event. This example can be run:
1shell> nuwa.py —n —1 —no—history —m"Quickstart.DtData"

2 —o daqPlus.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
3 daq.NoTag.0005773.Physics.SAB—AD2.SFO0—1._0001.root

After completion, the output file can be opened in ROOT and the new data variables can be viewed and
histogrammed (Fig 3.7.) The file can also be read back into another NuWa job, and the user data will still
be accessible.

dtLastTrigger
dt
Entries 105052
Mean 6.439e+05
RMS 7.119e+05

e s s e B s s s

806) x| Old ROOT Object Browser
Eile View Options Help

ECH =l [m <le] =) Option | =
All Folders Contents of ROOT Filesftest_dt roo/Event/lserData/Dt1"
[Zroot | A]User Data_Dt gt st LastTrigger 3
|_AFROOF sessions 10
[T ielizal Bickayabayiusers andwye
{AROOT Files
[=-itest_dt.roat
-3 Event
10°
() Random;1
(L0 Reactaut; 1

Triggers

10*

TTTTT

T
Ll

R
T
Ll

(A FRegistration Sequer.
E- Sy UserData.
o

-
S

ST

L b b b Ly b xR
4 | 1000 2000 3000 4000 5000 6000

[Dects. [atLastTrigger 7 dtLastTrigger [ns]

Figure 3.7: Example of browsing and histogramming user-defined data in ROOT.

To add your own variables, copy and modify the module Tutorial/Quickstart/python/Quickstart/Dt-
Data.py’. See section 3.4.8 for general advice on modifying an existing job module. Currently single
integers, single floating-point decimal numbers, and arrays of each can be added as user-defined variables.

3.4.4 Adding User-defined Variables to Tagged Events

The Tagging/UserTagging® package provides some convenient tools for simultaneously applying tags and
adding user data for those tagged events. Following the example described in section 3.4.2, user data can
be added in parallel to an event tag. In the initTagList function, you can define user data associated with
the tag:

1myTag = self.addTag(’MySpecialEvent’ , ’/Event/UserTag/MySpecialEvent’)

2myData = myTag.addData(’MySpecialData’,’/Event/UserData/MySpecialData’)
3myData.addInt (’myInt’)

In the check function, you should set the variable value before calling tagIt:

1if tagThisEvent:

2 # Keep track of the reconstructed data you are tagging
3 self.getTag(’MySpecialEvent’).setInputHeaders([recHdr]|)
4 myData = self.getTag(’MySpecialEvent’).getData(’MySpecialData’)

Shttp://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/
DtData.py

"http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/
DtData.py

8http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging

3.4. NUWA RECIPES 39

5 myData.set (’myInt’ ,12345)
6 self.taglt(’MySpecialEvent’)

3.4.5 Copy Data Paths to a New File

There may be situations where you would like to filter only some paths of data to a smaller file. The job
module SimpleFilter.Keep can be used for this purpose. The following example shows how to create an
output file which contains only the AdSimple reconstructed data:

1shell> nuwa.py —n —1 —m"SimpleFilter.Keep /Event/Rec/AdSimple"

2 —o adSimple.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
3 recon.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

This module can take multiple arguments to save more paths to the same file:

1shell> nuwa.py —n —1 —m"SimpleFilter.Keep /Event/Rec/AdSimple /Event/Rec/AdQmlf"
2 —o myRecData.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
3 recon.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

3.4.6 Write Tagged Data to a New File

There may be situations where you would like to filter only some events to a smaller data file. The
SmartFilter package provides some tools for this purpose. The first step is to define your own tag for
the events you wish to keep, as discussed in section 3.4.2. The following example shows how to create an
output file which contains only the events you have tagged as MySpecialEvents:

1shell> nuwa.py —n —1 —m"MySpecialTagger" —m"SmartFilter.Keep /Event/UserTag/MySpecialEvents"

2 —o mySpecialEvents.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
3 recon.NoTag.0005773.Physics.SAB—AD2.SF0O—1._0001.root

The output file will contain your tag /Event/UserTag/MySpecialEvents, plus any data that your tag
refers to such as /Event/Rec/AdSimple, /Event/Readout/ReadoutHeader, etc.

To create more advanced data filters, copy and modify the job module Filtering/SmartFilter/python/S-
martFilter /Example.py”.

3.4.7 Change an Existing Job Module

This section describes how to change an existing module with name PACKAGE.MODULE. First copy this
Job Module to your local directory. You can locate a module using the environment variable $ PACKAGE
ROOT,

1shell> mkdir mywork

2shell> cd mywork
3shell> cp $<PACKAGE>R00T/python/<PACKAGE>/<MODULE >.py myModule.py

Once you have a copy of the Job Module, open it with your favorite text editor. The module is written in
the Python language (http://www.python.org); see the Python website for a good tutorial on this language.
Job Modules are composed of two functions: configure() and run(),

1def configure(argv=J[]):

2 """A description of your module here

3 nnn

4 # Most job configuration commands here
5 return

6

7def run(app):

8 """Specific run-time configuration"""

9mttp://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/
Example.py

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/Example.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/Example.py
http://www.python.org
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/Example.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/Example.py

40 CHAPTER 3. ANALYSIS BASICS

9 # Some specific items must go here (Python algorithms, add libraries, etc.)
10 pass

For advice on what lines to modify in the module, send your request to the offline software mailing list:
thetal3-offline@dayabay.1bl.gov.

To run your modified version of the module, call it in the nuwa.py command without the PACKAGE.
prefix in the module name. With no prefix, modules from the current directory will be used.

1shell> 1s
2myModule . py
3shell> nuwa.py —n —1 —m"myModule" recon.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

3.4.8 Write a Python analysis Algorithm

If you wish to add your own algorithm to NuWa, a good place to start is by writing a prototype algorithm in
Python. Writing your algorithm in Python is much easier than C++, and does not require you to compile.
To get started, copy the example template Python algorithm to your local directory:

1shell> mkdir mywork
2shell> cd mywork
3shell> cp $QUICKSTARTROOT /python/Quickstart/Template.py myAlg.py

Alternatively, you can copy PrintRawData.py, PrintCalibData.py, or PrintReconData.py if you want
to specifically process the readout, calibrated, or reconstructed data. Each of these files is a combination of
a Python algorithm and a nuwa Python Job Module. To run this module and algorithm, you can call it in
the following way:

1shell> nuwa.py —n —1 —m"myAlg" recon.NoTag.0005773.Physics.SAB—AD2.SFO0—1._0001.root
Inside this file, you can find a Python algorithm. It is a Python class that defines three key functions:
e initialize(): Called once at job start
e execute(): Called once for each event

e finalize(): Called once at job end

You should edit these functions so that the algorithm will do the task you want. There are a few common
tasks for algorithms. One is to print to the screen some data from the event:

1def execute(self):

2 evt = self.evtSvc()
3 reconHdr = evt["/Event/Rec/RecHeader"]
4 print "Energy [MeV] = ", reconHdr.recResult ().energy() / units.MeV

Another common task is to histogram some data from the event:

1def initialize(self):

2 # Define the histogram

3 self.stats["/filel/myhists/energy"| = TH1F("energy",

4 "Reconstructed energy for each trigger",
5 100,0,10)

6

7def execute(self):

8 evt = self.evtSvc()

9 reconHdr = evt["/Event/Rec/RecHeader"]

if reconHdr.recResult ().energyStatus() = ReconStatus.kGood:
#Fill the histogram
self .stats["/filel/myhists/energy"].Fill(reconHdr.recResult ().energy() / units.MeV)

= o e
N o= O

3.4. NUWA RECIPES 41

Although these examples are simple, algorithms can perform complex calculations on the data that are
not possible directly from ROOT. For cheat-sheets of the data available in NuWa, see the following sections:
Readout data [3.5.8], Calibrated hit data [3.5.9], Reconstructed data [3.5.11].

Remember to commit your new algorithm to SVN! The wiki section SVN_Repository#Guidelines'® pro-
vides some tips on committing new software to SVN.

3.4.9 Write a C++ analysis Algorithm

A drawback of using Python algorithms is that they will usually run slower than an algorithm written in
C++. If you wish to run your algorithm as part of data production, or if you just want it to run faster, then
you should convert it to C++.

Adding a C++ algorithm to Gaudi is a more complex task. The first step is to create your own Project.
Your own Project allows you to write and run your own C+-+ analysis software with NuWa. See section
3.5.3 for how to prepare this.

Once you have your own project, you should prepare your own package for your new algorithm. A tool
has been provided to help you with this. The following commands will set up your own package:

1shell> cd myNuWa

2shell> svn export http:/ /dayabay.ihep.ac.cn/svn/dybsvn/people/wangzhe/Start
3shell> svn export http:/ /dayabay.ihep.ac.cn/svn/dybsvn/people/wangzhe/ProjRename
4shell> ProjRename Start MyNewAlg

5shell> 1s

6MyNewAlg ProjRename
7shell> emacs MyNewAlg/src/components/MyNewAlg.cc &

At this point you should edit the empty algorithm in MyNewAlg/src/components/MyNewAlg.cc. In
particular, you should add your analysis code into the initialize(), execute (), and finalize () functions.
To compile your new algorithm, you should do the following in a new clean shell:
1shell> pushd NuWa—trunk
2shell> source setup.sh
3shell> export CMTPROJECTPATH=/path/to/myProjects:${CMTPROJECTPATH}
4shell> popd

5shell> cd myNuWa/MyNewAlg/cmt
6shell> cmt config; cmt make;

Now you should setup a separate 'running’ shell for you to run and test your new algorithm. Staring
with a clean shell, run the following:
1shell> pushd NuWa—trunk
2shell> source setup.sh
3shell> export CMTPROJECTPATH=/path/to/myProjects:${CMTPROJECTPATH}
4shell> cd dybgaudi/DybRelease/cmt
5shell> source setup.sh
6shell> popd
7shell> pushd myNuWa/MyNewAlg/cmt
8shell> source setup.sh; source setup.sh;

Now you should be set up and ready to run your new NuWa algorithm in this shell:

1shell> nuwa.py —n —1 —m"MyNewAlg.run" recon.NoTag.0005773.Physics.SAB—AD2.SFO0—1._0001.root

Remember to commit your new algorithm to SVN!

3.4.10 Modify Part of NuWa

Sometimes you may want to modify an existing part of NuWa and test the changes you have made. First,
you must setup your own Project as shown in section 3.5.3.
Next, you should checkout the package into your Project:

Ohttps://wiki.bnl.gov/dayabay/index.php?title=SVN_Repository#Guidelines

https://wiki.bnl.gov/dayabay/index.php?title=SVN_Repository#Guidelines
https://wiki.bnl.gov/dayabay/index.php?title=SVN_Repository#Guidelines

42 CHAPTER 3. ANALYSIS BASICS

Table 3.3: Some Common Services

ICableSvc Electronics cable connection maps and hardware serial numbers
ICalibDataSvc PMT and RPC calibration parameters

ISimDataSvc PMT/Electronics input parameters for simulation

IJobInfoSvc NuWa Job History Information (command line, software version, etc)
IRunDataSvc DAQ Run information (run number, configuration, etc.)
IPmtGeomInfoSvc | Nominal PMT positions

IStatisticsSvc Saving user-defined histograms, ntuples, trees, etc. to output files

1shell> cd myNuWa

2shell> svn checkout http:/ /dayabay.ihep.ac.cn/svn/dybsvn/dybgaudi/trunk/Reconstruction/Center0fChargePos
3shell> 1s

4Center0fChargePos

5shell> emacs CenterOfChargePos/src/components/Center0fChargePosTool.cc &

After you have made your changes, you should compile and test your modifications. To compile the
modified package, you should run the following commands in a clean shell:

1shell> pushd NuWa—trunk

2shell> source setup.sh

3shell> export CMTPROJECTPATH=/path/to/myProjects:${CMTPROJECTPATH}
4shell> popd

5shell> cd myNuWa/CenterOfChargePos/cmt

6shell> cmt config; cmt make;

To make NuWa use your modified package, run the following commands in a new clean shell:

1shell> pushd NuWa—trunk

2shell> source setup.sh

3shell> export CMTPROJECTPATH=/path/to/myProjects:${CMTPROJECTPATH}
4shell> cd dybgaudi/DybRelease/cmt

5shell> source setup.sh

6shell> popd

7shell> pushd myNuWa/CenterOfChargePos/cmt

8shell> source setup.sh; source setup.sh;

This shell will now use your modified code instead of the original version in NuWa:

1shell> nuwa.py —n —1 —m"Quickstart.Calibrate" —m"Quickstart.Reconstruct"
2 —o recon.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
3 daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

After you have verified that your changes are correct, you can commit your changes:

1shell> cd CenterOfChargePos

2shell> svn diff

3(Review the changes you have made.)
4shell> svn commit —m"I fixed a bug!"

3.4.11 Using Services

Another advantage of using NuWa is that it provides a set of useful Services. Services give you access to other
data in addition to the event data, such as cable mappings, calibration parameters, geometry information,
etc. Services can also provide other useful tasks. Table 3.3 gives lists some common services. Section 3.5.14
gives detailed descriptions of the common services.

Multiple versions of the same service can exists. For example, StaticCalibDataSvc loads the PMT
calibration parameters from a text table, while DbiCalibDataSvc loads the PMT calibration parameters from
the database. To access a Service from a Python algorithm, you should load the service in the initialize ()
function:

3.4. NUWA RECIPES 43

self.calibDataSvc = self.svc(’ICalibDataSvc’,’StaticCalibDataSvc’)
if self.calibDataSvc —— None:
self .error("Failed to get ICalibDataSvc: StaticCalibDataSvc")
return FAILURE

W N =

When requesting a service, you provide the type of the service (ICalibDataSvc) followed by the specific
version you wish to use (StaticCalibDataSvc).
Loading the service in C++ is similar:
ICalibDataSvcx calibDataSvc = svc<ICalibDataSvc>("StaticCalibDataSvc", true);
if (!calibDataSvec) {

error () << "Failed to get ICalibDataSvc: StaticCalibDataSvc" << endregq;
return StatusCode :: FAILURE;

G W N =

44 CHAPTER 3. ANALYSIS BASICS

3.5 Cheat Sheets

3.5.1 Loading the NuWa software

On the computer clusters you must load the software each time you log on. You can load the NuWa software
using the nuwaenv command,

1shell> nuwaenv —r trunk —0

The nuwaenv command can incorporate both shared releases and personal projects. For more information
on using and configuring nuwaenv see: https://wiki.bnl.gov/dayabay/index.php?title=Environment_
Management_with_nuwaenv.

In the end, nuwaenv is a way of automating the sourcing of the following shell commands. The examples
given are for the pdsf cluster.

1# bash shell
2shell> cd /common/dayabay/releases/NuWa/trunk—opt/NuWa—trunk/
3shell> source setup.sh

4shell> cd dybgaudi/DybRelease/cmt/
5shell> source setup.sh

1# c—shell

2shell> cd /common/dayabay/releases/NuWa/trunk—opt/NuWa—trunk/
3shell> source setup.csh

4shell> cd dybgaudi/DybRelease/cmt/

5shell> source setup.csh

3.5.2 Installing the NuWa software

For the brave, you can attempt to install NuWa on your own computer. Try the following:

1shell> mkdir nuwa

2shell> cd nuwa

3shell> svn export http:/ /dayabay.ihep.ac.cn/svn/dybsvn/installation/trunk/dybinst/dybinst
4shell> ./dybinst trunk all

If you are very lucky, it will work. Otherwise, send questions to thetal3-offline@dayabay.lbl.gov.
Your chance of success will be much greater if your try to install NuWa on a computer running Scientific
Linux or OS X.

3.5.3 Making your own Project

If you want add or modify a part of NuWa, you should create your own Project. This will allow you to
create your own packages to add or replace those in NuWa. The first step is to create a subdirectory for
your packages in some directory /path/to/myProjects:

1shell> mkdir —p /path/to/myProjects/myNuWa/cmt

Create two files under myNuWa/cmt with the following content:

1shell> more project.cmt

2project myNuWa

3

4use dybgaudi

5

6build_strategy with_installarea
7structure_strategy without_version_directory
8setup_strategy root

1shell> more version.cmt
2vO0

https://wiki.bnl.gov/dayabay/index.php?title=Environment_Management_with_nuwaenv
https://wiki.bnl.gov/dayabay/index.php?title=Environment_Management_with_nuwaenv

3.5. CHEAT SHEETS 45

Now you can create new packages under the directory myNuWa/, and use them in addition to an existing
NuWa installation. See section 3.4.9 for more details.

You can also replace an existing NuWa package with you own modified version in myNuWa/. See sec-
tion 3.4.10 for more details.

3.5.4 Standard Data Files

A set of standard Daya Bay data files are available on the computer clusters. The following table provides
the location of these files on each cluster:

Type Location
Onsite Farm
daq. (.data) | /dyb/spade/rawdata
dag. 77
PDSF
dag. (.data) | (In HPSS Archive)
dag. /elizal6/dayabay /nuwaData/ exp,sim /dataTag/daq
calib. /elizal6/dayabay /nuwaData/exp,sim / dataTag/calib
recon. /elizal6/dayabay /nuwaData/ exp,sim/dataTag /recon
coine. /elizal6/dayabay/nuwaData/ exp,sim / dataTag/coinc
spall. /elizal6/dayabay /nuwaData/ exp,sim / dataTag /spall
IHEP
dag. (.data)
dagqg.
recon.
coinc.
spall.
BNL
daq. (.data)
daq.
recon.
coinc.
spall.

Using the Catalog

A Catalog tool is provided to locate the raw data files. Be sure to load NuWa before running this example
(see section 3.5.1). Here is a simple example to locate the raw data files for a run:

1shell> python

2Python 2.7 (r27:82500, Jan 6 2011, 05:00:16)

3[GCC 3.4.6 20060404 (Red Hat 3.4.6—8)] on linux2

4Type "help", "copyright", "credits" or "license" for more information.

5>>> import DybPython.Catalog

6>>> DybPython.Catalog.runs[8000]
7[’/elizal6/dayabay/data/exp/dayabay/2011/TestDAQ/NoTag/0430/daq.NoTag.0008000.Physics.EHl1-Merged.SFO-1._00
8>>> DybPython.Catalog.runs [8001]
9[’/elizal6/dayabay/data/exp/dayabay/2011/TestDAQ/NoTag/0430/daq.NoTag.0008001.Physics.EHl1-Merged.SFO0-1._00
10>>> DybPython.Catalog.runs [8002]
11[’/elizal6/dayabay/data/exp/dayabay/2011/TestDAQ/NoTag/0430/daq.NoTag.0008002. Pedestal .EH1-WPI.SFO-1._0001

For more information, refer to the Catalog description https://wiki.bnl.gov/dayabay /index.php?title=Accessing_Data_in_a

Mhttps://wiki.bnl.gov/dayabay/index.php?title=https://wiki.bnl.gov/dayabay/index.php?title=Accessing_Data_
in_a_Warehouse

https://wiki.bnl.gov/dayabay/index.php?title=https://wiki.bnl.gov/dayabay/index.php?title=Accessing_Data_in_a_Warehouse
https://wiki.bnl.gov/dayabay/index.php?title=https://wiki.bnl.gov/dayabay/index.php?title=Accessing_Data_in_a_Warehouse
https://wiki.bnl.gov/dayabay/index.php?title=https://wiki.bnl.gov/dayabay/index.php?title=Accessing_Data_in_a_Warehouse

46

3.5.5 Data File Contents

CHAPTER 3. ANALYSIS BASICS

The table below lists the known data paths and provides a short description of their contents.

Path Name Description

Real and Simulated Data
/Event/Readout ReadoutHeader Raw data produced by the experiment
/Event/CalibReadout | CalibReadoutHeader Calibrated times and charges of PMT and RPC hits
/Event/Rec AdSimple Toy AD energy and position reconstruction

AdQmlf AD Maximum-likelihood light model reconstruction
/Event/Tags Standard tags for event identification
/Event/Tags/Coinc ADCoinc Tagged set of AD time-coincident events
/Event/Tags/Muon MuonAny Single muon trigger from any detector

Muon/FirstMuonTrigger First trigger from a prompt set of muon triggers

Retrigger Possible retriggering due to muon event
/Event/Data CalibStats Extra statistics calculated from calibrated data
/Event/Data/Coinc ADCoinc Summary data for sets of AD time-coincident events
/Event/Data/Muon Spallation Summary data for muon events and subsequent AD events
/Event/UserTags User-defined event tags
/Event/UserData User-defined data variables

Simulated Data Only
/Event/Gen GenHeader True initial position and momenta of simulated particles
/Event/Sim SimHeader Simulated track, interactions, and PMT/RPC hits (Geant)
/Event/Elec ElecHeader Simulated signals in the electronics system
/Event/Trig TrigHeader Simulated signals in the trigger system
/Event/SimReadout SimHeader Simulated raw data

3.5.6 Common NuWa Commands

This section provides a list of common nuwa.py commands. You must load the NuWa software before you
can run these commands (see section 3.5.1).

1# Wrap raw DAQ files

in ROOT tree:
2shell> nuwa.py —n —1 —m"ProcessTools.LoadReadout"

3 —o daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
4 daq.NoTag.0005773.Physics.SAB—AD2.SF0O—1._0001.data

1# Generate Calibration Data
2shell> nuwa.py —n —1 —m"Quickstart.Calibrate" —m"Tagger.CalibStats"
3 —o0 calib.NoTag.0005773.Physics.SAB—AD2.SFO0—1._0001.root
4 daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

1# Generate Reconstruction—only data files
2shell> nuwa.py —n —1 —A"0.2s" —m"Quickstart.Calibrate" —m"Tagger.CalibStats"

3 —m"Quickstart.Reconstruct"

4 —m"SmartFilter.Clear" —m"SmartFilter.KeepRecon"

5 —o recon.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
6 daq.NoTag.0005773.Physics.SAB—AD2.SFO—1._0001.root

1# Generate Spallation—only data files
2shell> nuwa.py —n —1 —A"0.2s" —m"Quickstart.Calibrate" —m"Tagger.CalibStats"

3 —m" Quickstart.Reconstruct"

4 —m"Tagger . MuonTagger . MuonTag" —m"Tagger.MuonTagger.SpallData"
5 —m"SimpleFilter.Keep /Event/Data/Muon/Spallation"

6 —o spall.NoTag.0005773.Physics.SAB—AD2.SF0O—1._0001.root

7 daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

1
2
3

N O O

1
2
3

-

© 0 9 o w

1
2
3
4

1
2

3.5. CHEAT SHEETS 47

Generate ADCoincidence—only data files

shell> nuwa.py —n —1 —m"Quickstart.Calibrate" —m"Tagger.CalibStats"
—m"Quickstart.Reconstruct"
—m"Tagger .CoincTagger .ADCoincTag" —m"Tagger.CoincTagger.ADCoincData"
—m"SimpleFilter.Keep /Event/Data/Coinc/AD1CoincData /Event/Data/Coinc/AD2CoincData"
—o coinc.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

Generate ODM figures

shell> nuwa.py —n —1 —output—stats="{’filel’:’odmHistograms.root’}"
—m"AdBasicFigs.MakeFigs"
—m"Quickstart.Calibrate" —m"Tagger.CalibStats"
—m"AdBasicFigs.MakeCalibFigs"
—m"MuonBasicFigs.MakeCalibFigs"
—m"Quickstart.Reconstruct"
—m"AdBasicFigs.MakeReconFigs"
daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root

3.5.7 Conventions and Context

The following sections summarizes the conventions for sites, detectors, and other items used in the analysis
software.

Sites

The site ID identifies the site location within the experiment.
Site C++/Python Name | Number Description
Unknown kUnknown 0x00 Undefined Site
Daya Bay kDayaBay 0x01 Daya Bay Near Hall (EH-1)
Ling Ao kLingAo 0x02 Ling Ao Near Hall (EH-2)
Far kFar 0x04 Far Hall (EH-3)
Mid kMid 0x08 Mid Hall (Doesn’t exist)
Aberdeen kAberdeen 0x10 Aberdeen tunnel
SAB kSAB 0x20 Surface Assembly Building
PMT Bench Test | kPMTBenchTest 0x40 PMT Bench Test at Dong Guan
All kAl (Logical OR of all sites) | All sites

To access the site labels from Python, you can use the commands,

from GaudiPython import gbl
gbl.DayaBay.Detector

Site = gbl.Site

print Site.kDayaBay

For C++, the site labels can be accessed,

#include "Conventions/Site.h"
std::cout << Site::kDayaBay << std::endl;

The Site convention is defined in DataModel/Conventions/Conventions/Site.h!'2.

Detectors

The detector ID identifies the detector location within the site.

12http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/Site.h

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/Site.h
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/Site.h

CHAPTER 3. ANALYSIS BASICS

48
Detector C++/Python Name | Number | Description
Unknown kUnknown 0 Undefined Detector
AD stand 1 kAD1 1 Anti-neutrino detector on stand #1
AD stand 2 kAD2 2 Anti-neutrino detector on stand #2
AD stand 3 kAD3 3 Anti-neutrino detector on stand #3
AD stand 4 kAD4 4 Anti-neutrino detector on stand #4
Inner water pool | kIWS 5 Inner water pool
Outer water pool | KOWS 6 Outer water pool
RPC kRPC 7 Complete RPC assembly
All kAll 8 All detectors

To access the detector labels from Python, you can use the commands,

1from GaudiPython import gbl
2gbl.DayaBay.Detector
3DetectorId = gbl.DetectorId
4print DetectorId.kAD1

For C++, the detector labels can be accessed,

1#include "Conventions/DetectorId.h"
2std::cout << DetectorId::kAD1 << std::endl;

The Detector convention is defined in DataModel/Conventions/Conventions/DetectorId.h'3.

3.5.8 Raw DAQ Data

Conversion from .data

The raw DAQ file can be wrapped in a ROOT tree. This allows you to histogram the raw data directly
from ROOT, as shown in section 3.2.3. The following command will wrap the data. In addition, ROOT will
compress the raw data by almost half the original size. The file still contains the raw binary data; no event
data conversion is performed.

1shell> nuwa.py —n —1 —m"ProcessTools.LoadReadout"
2 —o daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.root
3 daq.NoTag.0005773.Physics.SAB—AD2.SF0—1._0001.data

Raw data in ROOT

The following table summarizes the raw data that is accessible directly from ROOT. All ROOT variables
must be preceded by dagPmtCrate() ..

trigger type | triggerType()
trigger time | triggerTime().GetSeconds()

TDC time tdes(board, connector,adcGain).values()
ADC charge | adcs(board,connector,adcGain).values()
gains(board,connector).values()
preAdcRaws(board, connector,adcGain).values() | Channel pre-ADC raw values

peaks(board, connector,adcGain).values() Clock cycle (in 25ns) of ADC peak relative to TDC hit

Item ROQOT Variable Description
site detector().site() Site ID number
detector detector().detectorId() Detector ID number

All active triggers, logically OR’d

Complete trigger time [seconds]

Channel TDC values

Channel ADC values

Channel ADC Gain (1: Fine ADC, 2: Coarse ADC)

Bhttp://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/

DetectorId.h

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/DetectorId.h
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/DetectorId.h
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/DetectorId.h

3.5. CHEAT SHEETS 49

Readout data in NuWa

Here is a cheat-sheet for processing raw data in Python. These lines can be used in the execute() function
of a Python algorithm.

© 0 N O U W N

GuoOt O Ot Ot Ot Ot Ot Ot Ot s s R R R B R R R R W W W W W W W W W W NN NDNDNNDNN == R e
© 00 N O Uk WO OO 0RE WN O © 000D OR RN RO © 00O ORI WN RO ®© OO R WN = O

evt = self.evtSvc()

Access the Readout Header. This is a container for the readout data
readoutHdr = evt["/Event/Readout/ReadoutHeader"|

if readoutHdr =—— None:

self.error ("Failed to get current readout header")
return FAILURE

Access the Readout. This is the data from one trigger.
readout = readoutHdr.daqCrate ().asPmtCrate()
if readout —— None:

self.info("No readout this cycle")

return SUCCESS

Get the detector ID for this trigger
detector = readout.detector ()
detector.detName ()

Trigger Type: This is an integer of the type for this trigger
readout .triggerType ()

Event Number: A count of the trigger, according to the DAQ
readout .eventNumber ()

Trigger Time: Absolute time of trigger for this raw data
triggerTime = readout.triggerTime ()

Loop over each channel data in this trigger
for channel in readout.channelReadouts ():
channelld = channel.channellId()

The channel ID contains the detector ID, electronics board number
and the connector number on the board.

channelld.detName ()

channelld.board()

channelId.connector ()

)

Loop over hits for this channel
for hitIdx in range(channel.hitCount ()):
TDC data for this channel

The TDC is an integer count of the time between the time
the PMT pulse arrived at the channel, and the time the
trigger reads out the data. Therefore, a larger TDC =

earlier time. One TDC count "= 1.5625 nanoseconds.

e FFHFIHHFE

Io%
1)

= channel.tdc(hitIdx)
ADC data for this channel

The ADC is an integer count of the charge of the PMT
pulse. It is 12 bits (0 to 4095). There are two ADCs
for every PMT channel (High gain and Low gain). Only
the high gain ADC is recorded by default. If the high
gain ADC is saturated (mnear 4095), then the low gain ADC
is recorded instead.

For the Mini Dry Run data, one PMT photoelectron makes
about 20 high gain ADC counts and about 1 low gain ADC
count. There is an offset (Pedestal) for each ADC of

FHRIHFFHFRFFFEFE

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

50 CHAPTER 3. ANALYSIS BASICS
770 ADC counts (ie. no signal = “70 ADC, 1 photoelectron
= 790 ADC, 2 p.e. = “110 ADC, etc.)
#
The ADC peal cycle is a record of the clock cycle which had
the ’peak’ ADC.
#
ADC Gain: Here is a description of ADC gain for these values
Unknown = 0
High =1
Low = 2
#

adc = channel.adc(hitIdx)

preAdc = channel.preAdcAvg(hitIdx)

peakCycle = channel.peakCycle(hitIdx)

isHighGain = channel.isHighGainAdc(hitIdx)

3.5.9 Calibrated Data
Calibrated data in ROOT

The following table summarizes the calibrated data visible directly in ROOT. Array items have their length
given in the brackets (i.e. nameflength]). ROOT will automatically draw all entries in the array given the
array name. See the ROOT User’s Guide for more details on working with Trees, http://root.cern.ch/
download/doc/12Trees.pdf.

Item ROQOT Variable Description

site site Site ID number

detector detector Detector ID number

event number eventNumber Unique ID number for each triggered event in a run

trigger type triggerType All active triggers, logically OR’d

trigger time triggerTimeSec Trigger time: seconds from Jan. 1970 (unixtime)
triggerTimeNanoSec Trigger time: nanoseconds from last second

AD PMT hits nHitsAD Number of AD PMT hits

Calib. PMT hits

Water Pool PMT hits

timeAD[nHitsAD]
chargeAD[nHitsAD]
hitCountAD[nHitsAD]
ring[nHitsAD]
column[nHitsAD]
nHitsAD_calib
timeAD_calib[nHitsAD_calib]
chargeAD _calib[nHitsAD_calib]
hitCountAD_calib[nHitsAD_calib]
topOrBottom[nHitsAD_calib]
acuColumn[nHitsAD_calib]
nHitsPool

timePool[nHitsPool]
chargePool[nHitsPool]
hitCountPool[nHitsPool]
wallNumber[nHitsPool]
wallSpot [nHitsPool]
inwardFacing[nHitsPool]

Calibrated time [ns] of PMT hit relative to trigger time
Calibrated charge [photoelectrons] of PMT hit

Index of this hit for this PMT (0, 1, 2, ...)

PMT ring in AD (counts 1 to 8 from AD bottom)
PMT column in AD (counts 1 to 24 counterclockwise)
Number of AD calibration PMT (2-inch) hits
Calibrated time [ns] of PMT hit relative to trigger time
Calibrated charge [photoelectrons] of PMT hit

Index of this hit for this PMT (0, 1, 2, ...)

PMT vertical position (1: AD top, 2: AD bottom)
PMT radial position (ACU axis: A=1, B=2, C=3)
Number of Water Pool PMT hits

Calibrated time [ns] of PMT hit relative to trigger time
Calibrated charge [photoelectrons] of PMT hit

Index of this hit for this PMT (0, 1, 2, ...)

PMT wall number

PMT spot number in wall

PMT direction (0: outward, 1: inward)

http://root.cern.ch/download/doc/12Trees.pdf
http://root.cern.ch/download/doc/12Trees.pdf

© 0 N O U W N

AR R R R A A A R W W0 W W W W W W WWNNNNNNNNNNRE R e e e e e e e
0 T O AR WO 000 dON R DO ©00 0 WD RO ®©O0 O oA WN RO

3.5.

CHEAT SHEETS

Calibrated data in NuWa

evt = self.evtSvc()

Access the Calib Readout Header.

This is a container for calibrated data

calibHdr = evt|["/Event/CalibReadout/CalibReadoutHeader"]

if calibHdr —— None:
self.error("Failed to get current calib readout header")
return FAILURE

MAccess the Readout. This is the calibrated data from one trigger.
calibReadout = calibHdr.calibReadout ()
if calibReadout == None:
self.error ("Failed to get calibrated readout from header")
return FAILURE

Get the detector ID for this trigger
detector = calibReadout.detector ()
detector.detName ()

Trigger Type: This is an integer of the type for this trigger
calibReadout.triggerType ()

Trigger Number: A count of the trigger, according to the DAQ
calibReadout .triggerNumber ()

Trigger Time: Absolute time of trigger for this calibrated data
triggerTime = calibReadout.triggerTime ()

Loop over each channel data in this trigger
for channel in calibReadout.channelReadout ():
sensorId = channel.pmtSensorId()
if detector.isAD():
pmtId = AdPmtSensor(sensorId.fullPackedData())
pmtId.detName ()
pmtId.ring()
pmtId.column ()
elif detector.isWaterShield ():
pmtId = PoolPmtSensor(sensorId.fullPackedData())
pmtId.detName ()
pmtId.wallNumber ()
pmtId.wallSpot ()
pmtId.inwardFacing ()

Calibrated hit data for this channel
for hitIdx in range(channel.size()):
Hit time is in units of ns, and is relative to trigger time
hitTime = channel.time(hitIdx)
Hit charge is in units of photoelectrons
hitCharge = channel.charge(hitIdx)

o1

Here is a cheat-sheet for processing calibrated data in Python. These lines can be used in the execute()
function of a Python algorithm.

3.5.10 Calibrated Statistics Data
Calibrated statistics data in ROOT

The following table summarizes the calibrated statistics data for each event visible directly in ROOT. Array
items have their length given in the brackets (i.e. nameflength/). ROOT will automatically draw all entries
in the array given the array name. See the ROOT User’s Guide for more details on working with Trees,
http://root.cern.ch/download/doc/12Trees.pdf.

http://root.cern.ch/download/doc/12Trees.pdf

92

CHAPTER 3. ANALYSIS BASICS

ROOT Variable

Description

dtLastAD1_ms
dtLastAD2_ms
dtLastIWS_ms
dtLastOWS_ms
dtLast_ADMuon_ms
dtLast_ADShower_ms
ELast_ADShower_pe
nHit

nPEMedian
nPERMS

nPESum
nPulseMedian
nPulseRMS
nPulseSum

tEarliest

tLatest

tMean

tMedian

tRMS
charge_sum_flasher_max

time_PSD

time_PSD1

time_PSD _local RMS
Q1

Q2

Q3

flasher flag
EarlyCharge
LateCharge
NominalCharge
MaxQ

maxqRing

maxqCol
QuadrantQ1
QuadrantQ2
QuadrantQ3
QuadrantQ4
Quadrant
MainPeakRMS
SecondPeakRMS
PeakRMS
RingKurtosis
ColumnKurtosis
Kurtosis
MiddleTimeRMS
integralRunTime_ms
integralLiveTime_buffer_full_ms
integralLiveTime_blocked _trigger_ms
blocked_trigger
buffer_full flag

Time since previous AD1 trigger [ms]

Time since previous AD2 trigger [ms]

Time since previous Inner water pool trigger [ms]

Time since previous Outer water pool trigger [ms]

Time since previous AD event with greater than 20 MeV [ms]
Time since previous AD event with greater than 1 GeV [ms]
Energy of last AD event with greater than 1 GeV [pe]

Total number of hit 8-inch PMTS

Median charge (number of photoelectrons) on PMTs

RMS of charge (number of photoelectrons) on PMTs

Total sum of charge (number of photoelectrons) on all PMTs
Median number of hits on PMTs

Median number of hits on PMTs

Total Sum of number of hits on all PMTs

Earliest hit time on all PMTs [ns]

Latest hit time on all PMTS [ns]

Mean hit time on all PMTS [ns]

Median hit time on all PMTS [ns]

RMS of hit time on all PMTS [ns]

The maxima total charge collected for one PMT in one readout [PE] (sum over all

For hits in each AD, for time window between -1650 and -1250 ns, m
For hits in each AD, for time window between -1650 and -1250 ns, m
The RMS of the time of the first hit (also must be within -1650 and -1250) for 5x5
The total charge (within -1650 and -1250) of nearby + 3 columns PMTs (total 7 cc
The total charge (within -1650 and -1250) of 4 — 9 and —4 — —9 columns PMTs (
The total charge (within -1650 and -1250) of PMTs for the rest of columns (other t
“l-time_PSD + 1- time_PSD1 + Q3/Q2*2 + nPEMax/nPESum + time_PSD_local
The charge sum in time window tj-1650ns

The charge sum in time window t;-1250ns

The charge sum in time window -1650nsjt{-1250ns, See Doc6926

The largest charge fraction of PMTs

The ring number of the MaxQ PMT

The column number of the MaxQ PMT

Total charge of PMTs with column number in [maxqCol-2, maxqCol+3]). For the -
Total charge of PMTs with column number in [(maxqCol+6)-2,(maxqCol+6)+3])
Total Charge of PMTs with column number in [(maxq+12)-2, (maxqCol+12)+3])
Total Charge of PMTs with column number in [(maxq+18)-2, (maxqCol+18)+3])
The ratio of QuadrantQ3/(QuadrantQ2 + QuadrantQ4)

According to the location of Max(@Q PMT, divide 24 columns into two clusters. Mai
See description in MainPeakRMS.

The sum of MainPeakRMS and SecondPeakRMS

Kurtosis of charge weighted distance in the Ring dimension for the MainPeak clust
Kurtosis of charge weighted distance in the Column dimension for the MainPeak cl
Sum of RingKurtosis and ColumnKurtosis

RMS of PMT first hit time in the time window (-1650ns, -1250ns). This time wind
'DAQ Running time’ from the start of the file up to the current trigger

'DAQ Livetime’ from the start of the file up to the current trigger. The 'DAQ Live
'DAQ Livetime’, using an alternate correction for 'blocked trigger’ periods

A count of the ’blocked triggers’ immediately preceding the current trigger. When
This flag is true if the electronics memory buffers filled immediately preceding this

© 0 N O Us W N

e
=)

OUoAe W N

3.5. CHEAT SHEETS 93

Calibrated statistics data in NuWa

Here is a cheat-sheet for processing calibrated statistics data in Python. These lines can be used in the
execute () function of a Python algorithm.

evt = self.evtSvc()

Access the Calibrated Statistics Data Header.
This is a container for calibrated statistics data
calibStats = evt["/Event/Data/CalibStats"]
if calibStats None:
self.debug("No calibrated statistics!")
return FAILURE

Access the Calibrated statistics data
nPESum = calibStats.get(’nPESum’).value ()

3.5.11 Reconstructed Data
Reconstructed data in ROOT

The following table summarizes the reconstructed data visible directly in ROOT. Reconstruction can op-
tionally estimate an energy, a position, and/or a track direction. The status variables should be checked to
determine whether reconstruction has successfully set any of these quantities.

Item ROQOT Variable Description

site site Site ID number

detector detector Detector ID number

trigger type | triggerType All active triggers, logically added

trigger time | triggerTimeSec Trigger time count in seconds from Jan. 1970 (unixtime)
triggerTimeNanoSec | Trigger time count of nanoseconds from last second

energy energyStatus Status of energy reconstruction (0: unknown, 1: good, >1: failures)
energy reconstructed energy [MeV]
energyQuality Measure of fit quality (x?, likelihood, etc.)

position positionStatus Status of position reconstruction (0: unknown, 1: good, >1: failures)
x reconstructed x position [mm] in AD, Water Pool, or RPC coordinates
y reconstructed y position [mm] in AD, Water Pool, or RPC coordinates
z reconstructed z position [mm] in AD, Water Pool, or RPC coordinates
positionQuality Measure of fit quality (x?, likelihood, etc.)

direction directionStatus Status of track reconstruction (0: unknown, 1: good, >1: failures)
dx reconstructed dx track direction in AD, Water Pool, or RPC coordinates
dy reconstructed dy track direction in AD, Water Pool, or RPC coordinates
dz reconstructed dz track direction in AD, Water Pool, or RPC coordinates
directionQuality Measure of fit quality (x?, likelihood, etc.)

error matrix | errorMatrixDim Dimension of error matrix (0 if not set)
errorMatrix Array of error matrix elements

Reconstructed data in NuWa

Here is a cheat-sheet for processing reconstructed data in Python. These lines can be used in the execute ()
function of a Python algorithm.

evt = self.evtSvc()

Access the Recon Header. This is a container for the reconstructed data
reconHdr = evt["/Event/Rec/AdSimple"]

if reconHdr =—— None:

© 0 N o

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

o4

CHAPTER 3. ANALYSIS BASICS

self.error("Failed to get current recon header")
return FAILURE

result = reconHdr.recTrigger ()

Get the detector ID for this trigger
detector = result.detector ()
detector.detName ()

Trigger Type: This is an integer of the type for this trigger
result.triggerType ()

Trigger Number: A count of the trigger, according to the DAQ
result.triggerNumber ()

Trigger Time: Absolute time of trigger for this raw data
triggerTime = result.triggerTime ()

Energy information
result.energyStatus ()
result.energy ()
result.energyQuality ()

Position information
result.positionStatus ()
result.position().x()
result.position().y()
result.position().z()
result.positionQuality ()

Direction information, for tracks
result.directionStatus ()
result.direction ().x()
result.direction().y()
result.direction().z()
result.directionQuality ()

Covariance Matrix, if one is generated
result.errorMatrix ()

3.5.12 Spallation Data
Spallation data in ROOT

The following table summarizes the spallation data visible directly in ROOT. Array items have their length
given in the brackets (i.e. nameflength]). ROOT will automatically draw all entries in the array given the
array name. See the ROOT User’s Guide for more details on working with Trees, http://root.cern.ch/
download/doc/12Trees.pdf.

http://root.cern.ch/download/doc/12Trees.pdf
http://root.cern.ch/download/doc/12Trees.pdf

3.5. CHEAT SHEETS

ROOT Variable

Description

tMu_s

tMu_ns

dtLastMu_ms
dtNextMu_ms

hitAD1

hitAD2

hitAD3

hitAD4

hitIWS

hitOWS

hitRPC
triggerNumber_AD1
triggerNumber_AD2
triggerNumber_AD3
triggerNumber_AD4
triggerNumber TWS
triggerNumber_ OWS
triggerNumber_RPC
triggerType_AD1
triggerType_AD2
triggerType_AD3
triggerType_AD4
triggerType IWS
triggerType_ OWS
triggerType_ RPC
dtAD1_ms

dtAD2_ms

dtAD3_ms

dtAD4_ms

dtIWS_ms

dtOWS_ms

dtRPC_ms

calib nPESum_AD1
calib nPESum_AD2
calib nPESum_AD3
calib_.nPESum_AD4
calib_nPESum _IWS
calib_nPESum_OWS
nRetriggers
detectorId_rt[nRetriggers]
dtRetrigger_ms[nRetriggers]
triggerNumber_rt[nRetriggers]
triggerType_rt[nRetriggers]
calib_-nPESum_rt[nRetriggers]
nSpall
detectorId_sp[nSpall]
triggerNumber_sp[nSpall]
triggerType_sp[nSpall]
dtSpall_ms[nSpall]
energyStatus_sp[nSpall]
energy_sp[nSpall]
positionStatus_sp[nSpall]
x_sp[nSpall]

y_sp[nSpall]

z_sp[nSpall]

Timestamp of this muon event (seconds part)
Timestamp of this muon event (nanoseconds part)
Time since previous muon event [ms]

Time to next muon event [ms]

Did AD1 have a prompt trigger for this muon?

Did AD2 have a prompt trigger for this muon?

Did AD3 have a prompt trigger for this muon?

Did AD4 have a prompt trigger for this muon?

Did the Inner water pool have a prompt trigger for this muon?
Did the Outer water pool have a prompt trigger for this muon?
Did the RPC have a prompt trigger for this muon?
Trigger number of prompt AD1 muon trigger (if exists)
Trigger number of prompt AD2 muon trigger (if exists)
Trigger number of prompt AD3 muon trigger (if exists)
Trigger number of prompt AD4 muon trigger (if exists)
Trigger number of prompt IWS muon trigger (if exists)
Trigger number of prompt OWS muon trigger (if exists)
Trigger number of prompt RPC muon trigger (if exists)
Trigger type of prompt AD1 muon trigger (if exists)
Trigger type of prompt AD2 muon trigger (if exists)
Trigger type of prompt AD3 muon trigger (if exists)
Trigger type of prompt AD4 muon trigger (if exists)
Trigger type of prompt IWS muon trigger (if exists)
Trigger type of prompt IWS muon trigger (if exists)
Trigger type of prompt IWS muon trigger (if exists)
Time since first prompt muon trigger [ms]

Time since first prompt muon trigger [ms]

Time since first prompt muon trigger [ms]

Time since first prompt muon trigger [ms]

Time since first prompt muon trigger [ms]

Time since first prompt muon trigger [ms]

Time since first prompt muon trigger [ms]

CalibStats charge sum from prompt muon trigger
CalibStats charge sum from prompt muon trigger
CalibStats charge sum from prompt muon trigger
CalibStats charge sum from prompt muon trigger
CalibStats charge sum from prompt muon trigger
CalibStats charge sum from prompt muon trigger
Total number of possible retriggers

Possible retrigger detector ID

Time of retrigger relative to first prompt muon trigger
Trigger number of retrigger

Trigger type of retrigger

Total charge sum of retrigger

Number of AD triggers between this muon and next muon
Detector ID of AD trigger

Trigger number of AD trigger

Trigger type of AD trigger

Time between AD trigger and first prompt muon trigger [ms]
AD energy reconstruction status

AD reconstructed energy [MeV]

AD position reconstruction status

AD reconstructed X position [mm]

AD reconstructed Y position [mm]

AD reconstructed Z position [mm]

%)

© 0 N O U W N

e
=)

56 CHAPTER 3. ANALYSIS BASICS

Spallation data in NuWa

Here is a cheat-sheet for processing spallation data in Python. These lines can be used in the execute()
function of a Python algorithm.

evt = self.evtSvc()

Access the Spallation Data Header.
This is a container for muon spallation data
spallData = evt["/Event/Data/Muon/Spallation"]
if spallData —— None:
self.debug("No spallation data this cycle")
return SUCCESS

Access the spallation data
nSpall = spall.get(’nSpall’).value()

3.5.13 Coincidence Data
Coincidence data in ROOT

The following table summarizes the coincidence data visible directly in ROOT. Array items have their length
given in the brackets (i.e. nameflength]). ROOT will automatically draw all entries in the array given the
array name. See the ROOT User’s Guide for more details on working with Trees, http://root.cern.ch/
download/doc/12Trees.pdf.

http://root.cern.ch/download/doc/12Trees.pdf
http://root.cern.ch/download/doc/12Trees.pdf

3.5. CHEAT SHEETS

ROOT Variable

Description

multiplicity
triggerNumber[multiplicity]
trigger Type[multiplicity]
t_s[multiplicity]
t_ns[multiplicity]
dt_ns[multiplicity]
energyStatus[multiplicity]
e[multiplicity]
positionStatus[multiplicity]
x[multiplicity]
y[multiplicity]
z[multiplicity]
I[mult*(mult-1)/2]
J[mult*(mult-1) /2]
dtLastAD1_ms[multiplicity]
dtLastAD2_ms[multiplicity]
dtLastIWS_ms[multiplicity]
dtLastOWS_ms[multiplicity]

dtLast_ADMuon_ms
dtLast_ADShower_ms
ELast_ADShower_pe
calib_nHit[multiplicity]
calib_-nPEMedian[multiplicity]
calib_nPERMS|[multiplicity]
calib_-nPESum[multiplicity]
calib_nPulseMedian[multiplicity]
calib_nPulseRMS[multiplicity]
calib_nPulseSum|[multiplicity]
calib_tEarliest[multiplicity]
calib_tLatest[multiplicity]
calib_tMean[multiplicity]
calib_tMedian[multiplicity]
calib_tRMS[multiplicity]
gen_count[multiplicity]
gen_e[multiplicity]
gen_execNumber[multiplicity]

gen_lastDaughterPid[multiplicity]

gen_pid[multiplicity]
gen_px[multiplicity]
gen_py|[multiplicity]
gen_pz[multiplicity]
gen_type[multiplicity]

Number of AD events within coincidence window
Trigger number of event

Trigger type of event

Timestamp of event (seconds part)

Timestamp of event (nanoseconds part)

Time relative to first event in multiplet

Status of AD energy reconstruction
Reconstructed energy [MeV]

Status of AD position reconstruction

AD Reconstructed X position [mm]

AD Reconstructed Y position [mm)]

AD Reconstructed Z position [mm]

Prompt helper array for ROOT histogramming
Delayed helper array for ROOT histogramming
Time since last muon in AD1 [ms]

Time since last muon in AD2 [ms]

Time since last muon in Inner water pool [ms]
Time since last muon in Outer water pool [ms]

Time since previous AD event above 3200 pe (20 MeV) [ms]
Time since previous AD event above 160000 pe (1 GeV) [ms]
Energy of last AD event with greater than 160000 pe [pe]

CalibStats data
CalibStats data
CalibStats data
CalibStats data
CalibStats data
CalibStats data
CalibStats data
CalibStats data
CalibStats data
CalibStats data
CalibStats data
CalibStats data
Monte-Carlo truth generator data
Monte-Carlo truth generator data
Monte-Carlo truth generator data
Monte-Carlo truth generator data
Monte-Carlo truth generator data
Monte-Carlo truth generator data
Monte-Carlo truth generator data
Monte-Carlo truth generator data
Monte-Carlo truth generator data

Coincidence data in NuWa

o7

Here is a cheat-sheet for processing coincidence data in Python. These lines can be used in the execute ()

function of a Python algorithm.

evt = self.evtSvc()

Access the Coincidence Data Header.

o8 CHAPTER 3. ANALYSIS BASICS

4 # This is a container for AD coincidence data

5 coincHdr = evt["/Event/Data/Coinc/AD1Coinc"]

6 if coincHdr —— None:

7 self.debug("No coincidence header this cycle")
8 return SUCCESS

9

10 # Access the Coincidence Data

11 dt_ms = coinc.get(’dt_ms’).value()

3.5.14 NuWa Services

(Add documentation for common services here.)

3.5.15 Computer Clusters

(Add details for each computer cluster here.)

3.5.16 Miscellaneous
Time Axes in ROOT

The following lines will display a time axis in a human-readable format using Beijing local time.

1root [3] htemp—>GetXaxis()—>SetTimeDisplay(1);

2root [4] htemp—>GetXaxis()—>SetTimeFormat ("#splitline{%H:%M:%SI{%d\/%m\/%Y}");
3root [5] htemp—>GetXaxis()—>SetNdivisions(505);

4root [6] htemp—>GetXaxis()—>SetTimeOffset (8x60%60);

5root [7] htemp—>Draw("colz");

3.6. HANDS-ON EXERCISES 99

3.6 Hands-on Exercises

e Find the AD Dry Run data files from run 5773 on PDSF.

Convert the first file of this run from .data to .root.

Generate a calibrated data file from this data.

Plot the AD charge map figures shown in Fig. 3.4

Generate a reconstructed data file from this data.

Plot the calibrated AD charge sum vs. the AD reconstructed energy.

From the first simulation file from run 29000, generate a spallation file and plot the time from each
AD event to the last muon.

From the first simulation file from run 29000, generate an AD coincidence file and plot the prompt vs.
delayed reconstructed energy.

Chapter 4

Offline Infrastructure

4.1

Mailing lists
existing lists, their purposes
offline list - expected topics
subscribing
archives

how to get help

DocDB

Content - what should go in DocDB
how to access

Major features

Basic instructions

how to get help
Wikis
Content - what should go in DocDB
How to access
Basic markup help

Conventions, types of topics

Using categories

Trac bug tracker

when to use it

roles and responsibilities

61

Chapter 5

Installation and Working with the Source
Code

5.1 Using pre-installed release

All major clusters should have existing releases installed and ready to use. Specific information on different
clusters is available in the wiki topic “Cluster Account Setup” !. The key piece of information to know is
where the release is installed.

Configuring your environment to use an installed release progresses through several steps.

5.1.1 Basic setup

Move to the top level release directory and source the main setup script.

shell> cd /path/to/NuWa-RELEASE
bash> source setup.sh
tcsh> source setup.csh

Replace “RELEASE” with “trunk” or the release label of a frozen release.

5.1.2 Setup the dybgaudi project

Projects are described more below. To set up your environment to use our software project, “dybgaudi”
and the other projects on which it depends to must enter a, so called, “release package” and source its setup
script.

shell> cd /path/to/NuWa-RELEASE
bash> source setup.sh
tcsh> source setup.csh

You are now ready to run some software. Try:

shell> cd $HOME
shell> nuwa.py --help

Thttps://wiki.bnl.gov/dayabay/index.php?title=Cluster_Account_Setup

63

https://wiki.bnl.gov/dayabay/index.php?title=Cluster_Account_Setup

64 CHAPTER 5. INSTALLATION AND WORKING WITH THE SOURCE CODE

5.2 Instalation of a Release

If you work on a cluster, it is best to use a previously existing release. If you do want to install your own

copy it is time and disk consuming but relatively easy. A script called “dybinst” takes care of everything.
First, you must download the script. It is best to get a fresh copy whenever you start an installation.

The following examples show how to install the “trunk” branch which holds the most recent development.

shell> svn export http://dayabay.ihep.ac.cn/svn/dybsvn/installation/trunk/dybinst/dybinst
Now, let it do its work:
shell> ./dybinst trunk all
Expect it to take about 3-4 hours depending on your computer’s disk, CPU and network speed. It will
also use several GBs of storage, some of which can be reclaimed when the install is over.
5.3 Anatomy of a Release
external/ holds 3" party binary libraries and header files under PACKAGE/VERSION/ sub directories.

NuWa-RELEASE/ holds the projects and their packages that make up a release.

lcgemt build information for using 3"¢ party external packages

gaudi the Gaudi framework

lhcb packages adopted from the LHCb experiment

dybgaudi packages specific to Daya Bay offline software

relax packages providing dictionaries for CLHEP and other HEP libraries.

5.3.1 Release, Projects and Packages

e What is a release. For now see https://wiki.bnl.gov/dayabay/index.php?title=Category:0ffline_
Software_Releases

e What is a package. For now see https://wiki.bnl.gov/dayabay/index.php?title=CMT_Packages

e What is a project. For now see https://wiki.bnl.gov/dayabay/index.php?title=CMT_Projects.

5.3.2 Personal Projects

e Using a personal project with projects from a NuWa release.

e CMTPROJECTPATH

For now see https://wiki.bnl.gov/dayabay/index.php?title=CMT_Projects.

https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
https://wiki.bnl.gov/dayabay/index.php?title=CMT_Packages
https://wiki.bnl.gov/dayabay/index.php?title=CMT_Projects
https://wiki.bnl.gov/dayabay/index.php?title=CMT_Projects

5.4. VERSION CONTROL YOUR CODE 65

5.4 Version Control Your Code

5.4.1 Using SVN to Contribute to a Release
5.4.2 Using GIT with SVN

Advanced developers may consider using git? to interface with the SVN repository. Reasons to do this
include being able to queue commits, advanced branching and merging, sharing code with other git users
or with yourself on other computers with the need to commit to SVN. In particular, git is used to track
the projects (gaudi, etc) while retaining the changes Daya Bay makes. For more information see https:
//wiki.bnl.gov/dayabay/index.php?title=Synchronizing_ Repositories.

5.5 Technical Details of the Installation

5.5.1 LCGCMT

The LCGCMT package is for defining platform tags, basic CMT macros, building external packages and
“glueing” them into CMT.

Builders

The builders are CMT packages that handle downloading, configuring, compiling and installing external
packages in a consistent manner. They are used by dybinst or can be run directly. For details see the
README. org file under lcgemt/LCG _builders/ directory.

Some details are given for specific builders:

data: A select sampling of data files are installed under the “data” external package. These are intended
for input to unit tests or for files that are needed as input but are too large to be conveniently
placed in SVN. For the conventions that must be followed to add new files see the comments in the
data/cmt/requirements/ file under the builder area.

%http://git.or.cz/

https://wiki.bnl.gov/dayabay/index.php?title=Synchronizing_Repositories
https://wiki.bnl.gov/dayabay/index.php?title=Synchronizing_Repositories
http://git.or.cz/

Chapter 6

Offline Framework

6.1 Introduction

When writing software it is important to manage complexity. One way to do that is to organize the software
based on functionality that is generic to many specific, although maybe similar applications. The goal is to
develop software which “does everything” except those specific things that make the application unique. If
done well, this allows unique applications to be implemented quickly, and in a way that is robust against
future development but still flexible to allow the application to be taken in novel directions.

This can be contrasted with the inverted design of a toolkit. Here one focuses on units of functionality
with no initial regards of integration. One builds libraries of functions or objects that solve small parts of
the whole design and, after they are developed, find ways to glue them all together. This is a useful design,
particularly when there are ways to glue disparate toolkits together, but can lead to redundant development
and inter-operational problems.

Finally there is the middle ground where a single, monolithic application is built from the ground up.
When unforeseen requirements are found their solution is bolted on in whatever the most expedient way
can be found. This can be useful for quick initial results but eventually will not be maintainable without
growing levels of effort.

6.2 Framework Components and Interfaces

Gaudi components are special classes that can be used by other code without explicitly compiling against
them. They can do this because they inherit from and implement one or more special classes called “interface
classes” or just interfaces. These are light weight and your code compiles against them. Which actual
implementation that is used is determined at run time by looking them up by name. Gaudi Interfaces are
special for a few reasons:

Pure-virtual: all methods are declared =0 so that implementations are required to provide them. This is
the definition of an “interface class”. Being pure-virtual also allows for an implementation class to
inherit from multiple interfaces without problem.

References counted: all interfaces must implement reference counting memory management.
ID number: all interface implementations must have a unique identifying number.

Fast casting: all interfaces must implement the fast queryInterface() dynamic cast mechanism.

Part of a components implementation involves registering a “factory” class with Gaudi that knows how
to produce instances of the component given the name of the class. This registration happens when the

67

68 CHAPTER 6. OFFLINE FRAMEWORK

component library is linked and this linking can be done dynamically given the class name and the magic of
generated rootmap files.

As a result, C++ (or Python) code can request a component (or Python shadow class) given its class
name. At the same time as the request, the resulting instance is registered with Gaudi using a nick-name!.
This nick-name lets you configure multiple instances of one component class in different ways. For example
one might want to have a job with two competing instances of the same algorithm class run on the same

data but configured with two different sets of properties.

6.3 Common types of Components

The main three types of Gaudi components are Algorithms, Tools and Services.

6.3.1 Algorithms
o Inherit from GaudiAlgorithm or if you will produce data from DybAlgorithm.
e execute(), initialize(), finalize() and associated requirements (eg. calling GaudiAlgorithm::initialize()).

e TES access with get () and put () or getTes() and putTES if implementing DybAlgorithm. There is
also getAES to access the archive event store.

e Logging with info (), etc.
e required boilerplate (_entries & _load files, cpp macros)

e some special ones: sequencer (others?)

Algorithms contain code that should be run once per execution cycle. They may take input from the
TES and may produce output. They are meant to encapsulate complexity in a way that allows them to be
combined in a high-level manner. They can be combined in a serial chain to run one-by-one or they can
run other algorithms as sub-algorithms. It is also possible to set up high-level branch decisions that govern
whether or not sub-chains run.

6.3.2 Tools

Tools contain utility code or parts of algorithm code that can be shared. Tool instances can be public, in
which case any other code may use it, or they may be private. Multiple instances of a private tool may be
created. A tool may be created at any time during a job and will be deleted once no other code references
it.

6.3.3 Services

Service is very much like a public tool of which there is a single instance created. Services are meant to be
created at the beginning of the job and live for its entire life. They typically manage major parts of the
framework or some external service (such as a database).

INick-names default to the class name.

6.4. WRITING YOUR OWN COMPONENT 69

6.4 Writing your own component

6.4.1 Algorithms

One of the primary goals of Gaudi is to provide the concept of an Algorithm which is the main entry point
for user code. All other parts of the framework exist to allow users to focus on writing algorithms.
An algorithm provide three places for users to add their own code:

initialize() This method is called once, at the beginning of the job. It is optional but can be used to
apply any properties that the algorithm supports or to look up and cache pointers to services, tools or
other components or any other initializations that require the Gaudi framework.

execute() This method is called once every execution cycle (“event”). Here is where user code does imple-
ments whatever algorithm the user creates.

finalize() This method is called once, at the end of the job. It is optional but can be used to release()
any cached pointers to services or tools, or do any other cleaning up that requires the Gaudi framework.

When writing an algorithm class the user has three possible classes to use as a basis:

Algorithm is a low level class that does not provide many useful features and is probably best to ignore.

GaudiAlgorithm inherits from Algorithm and provide many useful general features such as access to the
message service via info() and related methods as well as methods providing easy access to the TES
and TDS (eg, get) and getDet()). This is a good choice for many types of algorithms.

DybAlgorithm inherits from GaudiAlgorithm and adds Daya Bay specific features related to producing
objects from the DataModel. It should only be considered for algorithms that need to add new data
to the TES. An algorithm may be based on GaudiAlgorithm and still add data to the TES but some
object bookkeeping will need to be done manually.

Subclasses of DybAlgorithm should provide initialize, execute and finalize methods as they would
if they use the other two algorithm base classes. DybAlgorithm is templated by the DataModel data type
that it will produce and this type is specified when a subclass inherits from it. Instances of the object should
be created using the MakeHeaderObject () method. Any input objects that are needed should be retrieved
from the data store using getTES() or getAES(). Finally, the resulting data object is automatically put
into the TES at the location specified by the “Location” property which defaults to that specified by the
DataModel class being used. This will assure bookkeeping such as the list of input headers, the random
state and other things are properly set.

6.4.2 Tools
e examples
e Implementing existing tool interface,
e writing new interface.

e required boilerplate (_entries & _load files, cpp macros)

70 CHAPTER 6. OFFLINE FRAMEWORK

6.4.3 Services

e common ones provided, how to access in C++

e Implementing existing service interface,

writing new interface.

Include difference between tools and service.

required boilerplate (_entries & load files, cpp macros)

6.4.4 Generalized Components
6.5 Properties and Configuration

Just about every component that Gaudi provides, or those that Daya Bay programmers will write, one or
more properties. A property has a name and a value and is associated with a component. Users can set
properties that will then get applied by the framework to the component.

Gaudi has two main ways of setting such configuration. Initially a text based C++-like language was
used. Daya Bay does not use this but instead uses the more modern Python based configuration. With this,
it is possible to write a main Python program to configure everything and start the Gaudi main loop to run
some number of executions of the top-level algorithm chain.

The configuration mechanism described below was introduced after release 0.5.0.

6.5.1 Overview of configuration mechanism

Job option
Python scripts
or modules

Configure and
Helper classes

Configurables

Figure 6.1: Cartoon of the layers of configuration code.

The configuration mechanism is a layer of Python code. As one goes up the layer one goes from basic
Gaudi configuration up to user interaction. The layers are pictured in Fig. 6.1. The four layers are described
from lowest to highest in the next sections.

6.5. PROPERTIES AND CONFIGURATION 71

6.5.2 Configurables

All higher layers may make use of Configurables. They are Python classes that are automatically generated
for all components (Algorithms, Tools, Services, etc). They hold all the properties that the component
defines and include their default values and any documentation strings. They are named the same as the
component that they represent and are available in Python using this pattern:

1from PackageName.PackageNameConf import MyComponent

2mc = MyComponent ()
3mc.SomeProperty = 42

You can find out what properties any component has using the properties.py script which should be
installed in your PATH.

1shell> properties.py
2GtGenerator

3 GenName : Name of this generator for book keeping purposes.

4 GenTools: Tools to generate HepMC::GenEvents

5 GlobalTimeOffset: None

6 Location: TES path location for the HeaderObject this algorithm produces.
7

A special configurable is the ApplicationMgr. Most users will need to use this to include their algorithms
into the “TopAlg” list. Here is an example:
1
2from Gaudi.Configuration import ApplicationMgr
3theApp = ApplicationMgr ()
4
5from MyPackage.MyPackageConf import MyAlgorithm
6ma = MyAlgorithm()
7ma.SomeProperty = "harder, faster, stronger"
8theApp.TopAlg.append(ma)

Configurables and Their Names

It is important to understand how configurables eventually pass properties to instantiated C++ objects.
Behind the scenes, Gaudi maintains a catalog that maps a key name to a set of properties. Normally, no
special attention need be given to the name. If none is given, the configurable will take a name based on its
class:

1

2generic = MyAlgorithm()

3

4specific = MyAlgorithm(’algl’)

5

6theApp.TopAlg.append(generic)

7theApp.TopAlg.append(specific)

8

Naming Gaudi Tool Configurables

In the case of Gaudi Tools, things become more complex. Tools themselves can (and should) be configured
through configurables. But, there are a few things to be aware of or else one can become easily tricked:

e Tool configurables can be public or private. A public tool configurable is “owned” by ToolSvc and
shared by all parents, a private one is “owned” by a single parent and not shared.

e By default, a tool configurable is public.

e “Ownership” is indicated by prepending the parent’s name, plus a dot (“.”) to the a simple name.

72 CHAPTER 6. OFFLINE FRAMEWORK

e Ownership is set, either when creating the tool configurable by prepending the parent’s name, or during
assignment of it to the parent configurable.

e During assignment to the parent a copy will be made if the tool configurable name is not consistent
with the parent name plus a dot prepended to a simple name.

What this means is that you may end up with different final configurations depending on:

e the initial name you give the tool configurable
e when you assign it to the parent
e if the parent uses the tool as a private or a public one

e when you assign the tool’s properties

To best understand how things work some examples are given. An example of how public tools work:

1mt = MyTool("foo")
2mt . getName ()

3

amt . Cut = 1
5algl.pubtool = mt
6mt.Cut = 2
7alg2.pubtool = mt
8mt.Cut = 3

9

Here a single “MyTool” configurable is created with a simple name. In the constructor a “ToolSvc.” is
appended (since there was no “.” in the name). Since the tool is public the final value (3) will be used by
both algl and alg2.

An example of how private tools work:

1mt = MyTool("foo")

2mt . getName ()

3

amt.Cut = 1

5algl.privtool = mt

6

7mt . Cut = 2

8alg2.privtool = mt

9

10

11

12from Gaudi.Configuration import Configurable
13mt2 = Configurable.allConfigurables|["alg2.foo"]
14mt2.Cut = 3

15

Again, the same tool configurable is created and implicitly renamed. An initial cut of 1 is set and the tool
configurable is given to algl. Guadi makes a copy and the “ToolSvc.foo”